• 제목/요약/키워드: Bhattacharyya Algorithm

검색결과 15건 처리시간 0.019초

Bhattacharyya 커널을 적용한 Centroid Neural Network (Centroid Neural Network with Bhattacharyya Kernel)

  • 이송재;박동철
    • 한국통신학회논문지
    • /
    • 제32권9C호
    • /
    • pp.861-866
    • /
    • 2007
  • 본 논문은 가우시안 확률분포함수 (Gaussian Probability Distribution Function) 데이터 군집화를 위해 중심신경망 (Centroid Neural Network, CNN)에 Bhattacharyya 커널을 적용한 군집화 알고리즘 (Bhattacharyya Kernel based CNN, BK-CNN)을 제안한다. 제안된 BK-CNN은 무감독 알고리즘인 중심신경망을 기반으로 하고 있으며, 커널 방법을 이용하여 데이터를 특징공간에서 투영한다. 입력공간의 비선형 문제를 선형적으로 해결하기 위해 제안한 커널 방법인데, 확률분포 사이의 거리측정을 위해 Bhattacharyya 거리를 이용한 커널방법을 사용하였다. 제안된 BK-CNN을 영상데이터 분류의 문제에 적용했을 때, 제안된 BK-CNN 알고리즘이 Bhattacharyya 커널을 적용한 k-means, 자기조직지도(Self-Organizing Map)와 중심 신경망등의 기존 알고리즘보다 1.7% - 4.3%의 평균 분류정확도 향상을 가져옴을 확인할 수 있었다.

바타차랴 알고리즘에서 HMM 특징 추출을 이용한 음성 인식 최적 학습 모델 (Speech Recognition Optimization Learning Model using HMM Feature Extraction In the Bhattacharyya Algorithm)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제11권6호
    • /
    • pp.199-204
    • /
    • 2013
  • 음성 인식 시스템은 정확하지 않게 입력된 음성으로부터 학습 모델을 구성하고 유사한 음소 모델로 인식하기 때문에 인식률 저하를 가져온다. 따라서 본 논문에서는 바타차랴 알고리즘을 이용한 음성 인식 최적 학습 모델 구성 방법을 제안하였다. 음소가 갖는 특징을 기반으로 학습 데이터의 음소에 HMM 특징 추출 방법을 이용하였으며 유사한 학습 모델은 바타챠랴 알고리즘을 이용하여 정확한 학습 모델로 인식할 수 있도록 하였다. 바타챠랴 알고리즘을 이용하여 최적의 학습 모델을 구성하여 인식 성능을 평가하였다. 본 논문에서 제안한 시스템을 적용한 결과 음성 인식률에서 98.7%의 인식률을 나타내었다.

Bhattacharyya Distance에 기반한 다중클래스 문제에 대한 피춰 추출 기법 (Feature Extraction Method based on Bhattacharyya Distance for Multiclass Problems)

  • 최의선;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.643-646
    • /
    • 1999
  • In this paper, we propose a feature extraction method based on Bhattacharyya distance for multiclass problems. The Bhattacharyya distance provides a valuable information in determining the effectiveness of a feature set and has been used as separability measure for feature selection. Recently, a feature extraction algorithm hat been proposed for two normally distributed classes based on Bhattacharyya distance. In this paper, we propose to expand the previous approach to multiclass cases. Experiment results show that the proposed method compares favorably with the conventional methods.

  • PDF

모수 추정을 위한 베이시안 기법과 바타차랴 알고리즘을 융합한 어휘 인식 성능 향상 (Vocabulary Recognition Performance Improvement using a convergence of Bayesian Method for Parameter Estimation and Bhattacharyya Algorithm Model)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제13권10호
    • /
    • pp.353-358
    • /
    • 2015
  • 어휘 인식 시스템은 학습 모델을 구성하여 인식하므로 구성되어진 모델에서 벗어난 어휘의 입력과 유사한 어휘의 입력은 인식하지 못하거나 유사한 어휘로 인식되어 인식률 저하가 나타난다. 이런 경우 인식 모델을 확장할 수 있도록 재구성하거나 인식 모델 구성 시 확장성을 반영하므로 해결할 수 있다. 본 논문에서는 모델 구성 시 확장성을 반영할 수 있는 모수 추정을 위한 베이시안 기법을 사용하여 바타차랴 알고리즘 음성 인식 학습 모델 구성 방법을 융합하여 제안하였다. 음소가 갖는 특징을 기반으로 학습 데이터의 음소에 모수 추정을 위한 베이시안 기법을 이용하였고 유사한 학습 모델은 바타챠랴 알고리즘을 이용하여 정확한 학습 모델로 인식하도록 하였다. 바타챠랴 알고리즘 인식 모델을 구성하여 인식 성능을 평가하였다. 본 논문에서 제안한 시스템을 적용한 결과 어휘 인식률에서 97.5%의 인식률과 1.2초의 학습 시간을 나타내었다.

정준상관분류에 의한 하이퍼스펙트럴영상 분류에서 유효밴드 선정 및 추출에 관한 연구 (A Study on Feature Selection and Feature Extraction for Hyperspectral Image Classification Using Canonical Correlation Classifier)

  • 박민호
    • 대한토목학회논문집
    • /
    • 제29권3D호
    • /
    • pp.419-431
    • /
    • 2009
  • 본 연구의 핵심은 하이퍼스펙트럴영상에 정준상관분류기법을 적용할 때, 최적의 분광밴드를 찾아내는 유효밴드 선정 및 추출기법은 무엇인가를 알아내는 것이다. 본 연구에서는 미국의 Purdue University에서 개발된 Multispec$^{(C)}$ 소프트웨어를 사용하여 각각의 분리도 결정기법에 따른 최적의 유효밴드를 선정하였다. 사용된 분리도 결정기법은 Divergence, Transformed Divergence, Bhattacharyya, Mean Bhattacharyya, Covariance Bhattacharyya, Non Covariance Bhattacharyya로서 총 6가지이다. 특징추출을 위해 Erdas Imagine과 ENVI 소프트웨어를 사용하여 PCA 변환과 MNF 변환을 수행하였다. 유효밴드 선정 및 특징추출의 효과에 대한 비교평가를 위해, 정준상관분류기법에 의한 토지피복분류작업을 수행하였다. 1차 선별된 60개 밴드를 사용한 정준상관분류의 정확도는 71.8%이며, 정준상관분류를 사용하여 가장 높은 분류정확도를 얻은 방법은 Noncovariance Bhattacharyya 적용 후 정준상관분류를 수행한 경우로서 전체정확도 79.0% 이다. 결론적으로 정준상관분류에 의한 하이퍼스펙트럴영상 분류에서는 유효밴드선정기법으로 사실상 Noncovariance Bhattacharyya 기법만 유용하였으며, 나머지 유효밴드 선정기법(Divergence 제외)과 특징추출기법은 정준상관분류에서는 오히려 분류정확도가 하락함을 확인하였다.

영역 기반 물체 추적에서 색상 배치를 고려한 표적 모델링 (Target Modeling with Color Arrangement for Region-Based Object Tracking)

  • 김대환;이승준;고성제
    • 대한전자공학회논문지SP
    • /
    • 제49권1호
    • /
    • pp.1-10
    • /
    • 2012
  • 본 논문은 물체 추적에 적합한 새로운 형식의 히스토그램 모델을 제안한다. 제안하는 색상 히스토그램은 양자화 된 각 색상요소에 대해 픽셀의 개수뿐만 아니라 평균 위치 정보 그리고 평균 위치로부터 일정하게 떨어진 영역에 속하는 픽셀들의 색상평균값을 포함한다. 또한 제안하는 히스토그램간의 유사도를 나타내기 위하여 Bhattacharyya 거리를 기본으로 새로운 유사도 함수를 정의하고 mean shift 기법에 적용한다. 기존의 mean shift 기반 기법들과는 달리 본 논문에서 제안하는 알고리즘은 물체 주변 배경 영역에 물체와 비슷한 색상이 존재하더라도 강건한 물체 추적이 가능하다. 실험 결과는 기존 기법들과의 비교를 통하여 개선된 추적 결과를 보여준다.

벡터모델 기반 바타챠랴 거리 측정 기법과 우도 원리 베이시안을 융합한 어휘 인식 모델 (Vocabulary Recognition Model using a convergence of Likelihood Principla Bayesian methode and Bhattacharyya Distance Measurement based on Vector Model)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제13권11호
    • /
    • pp.165-170
    • /
    • 2015
  • 어휘 인식 시스템은 구성되어진 모델에서 벗어난 어휘의 입력과 유사한 어휘의 입력은 인식하지 못하거나 유사한 어휘로 인식되어 인식률 저하가 나타나며, 기존의 시스템은 벡터 값을 모델로 만들어 데이터베이스로 구성하여 어휘 인식에 사용하였다. 어휘 인식을 위한 탐색 중에 형성되는 모델은 데이터베이스로 구성되어 있지 않아 인식할 수 없는 단점이 존재한다. 따라서 본 논문에서는 특징 벡터 모델을 기반으로 바타챠랴 거리 측정법을 이용한 베이시안 인식 모델을 구성하여 탐색 중에 형성되는 벡터 모델을 인식할 수 있도록 유도하였으며, 위너 필터를 적용하여 인식률을 향상시켰다. 2 방법을 융합하여 실험한 결과 향상된 신뢰도로 인해 높은 인식 성능을 확인하였으며, 본 논문에서 제안한 측정법을 이용하여 기존의 방법들에 비하여 평균 98.2%의 성능을 나타내었다.

가중 컬러 중심 이동을 이용한 물체 추적 알고리즘 (Object Tracking Algorithm Using Weighted Color Centroids Shifting)

  • 최은철;이석호;강문기
    • 방송공학회논문지
    • /
    • 제15권2호
    • /
    • pp.236-247
    • /
    • 2010
  • 최근 평균이동(mean shift) 알고리즘과 같은 커널 기반의 추적 알고리즘이 활발하게 연구되고 있다. 이러한 방식의 알고리즘은 커널이 제공하는 컬러 히스토그램 정보와 약간의 공간적 정보를 이용하는 방식으로 적은 연산량으로 추적을 수행할 수 있는 장점을 지니고 있다. 그러나 공간성을 확보하기 위한 등방성 커널과 유사성을 비교하기 위한 바타차야 계수를 사용하기 때문에 발생하는 불안정성이 존재한다. 본 논문은 커널과 바타차야 계수의 사용이 왜 알고리즘의 불안정성을 야기 시킬 수 있는지에 대해 분석한다. 또한 이 분석을 바탕으로 새로운 추적 알고리즘을 제안한다. 제안한 알고리즘은 표적을 구성하는 컬러별 중심을 이용하는 방법으로 표적의 컬러, 컬러별 화소의 빈도, 공간적 정보 등이 반영된다. 제안한 방법은 평균 이동 방법보다 결과의 오류 비율이 적으며, 다음 프레임에서의 표적 위치가 반복 없이 한차례의 연산으로 얻어진다. 또한, 낮은 프레임 율 및 일부 폐색이 발생하여 평균 이동 방법으로는 실패하는 상황에서도 성공적으로 동작한다.

Object Modeling with Color Arrangement for Region-Based Tracking

  • Kim, Dae-Hwan;Jung, Seung-Won;Suryanto, Suryanto;Lee, Seung-Jun;Kim, Hyo-Kak;Ko, Sung-Jea
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.399-409
    • /
    • 2012
  • In this paper, we propose a new color histogram model for object tracking. The proposed model incorporates the color arrangement of the target that encodes the relative spatial distribution of the colors inside the object. Using the color arrangement, we can determine which color bin is more reliable for tracking. Based on the proposed color histogram model, we derive a mean shift framework using a modified Bhattacharyya distance. In addition, we present a method of updating an object scale and a target model to cope with changes in the target appearance. Unlike conventional mean shift based methods, our algorithm produces satisfactory results even when the object being tracked shares similar colors with the background.

수중로봇을 위한 형태를 기반으로 하는 인공표식의 인식 및 추종 알고리즘 (Shape Based Framework for Recognition and Tracking of Texture-free Objects for Submerged Robots in Structured Underwater Environment)

  • 한경민;최현택
    • 전자공학회논문지SC
    • /
    • 제48권6호
    • /
    • pp.91-98
    • /
    • 2011
  • 본 논문에서는 수중로봇에 쓰일 수 있는 카메라 영상을 기반으로 하는 인공표식물의 인식 및 추종 기법을 제안한다. 문제를 풀기 위해 제안된 방법은 인식과 추종의 두 개의 단계로 이루어져 있으며 인식단계에서는 물체의 외형에 관한 특징을 분석한 후 비선형 최적화 알고리즘을 통하여 알맞은 목표물로 분류한다. 이 후 추종 단계에서는 분류된 목표물에서 색깔 히스토그램을 추출한 후 meanshift 추종 법을 이용하여 지속적으로 추종하는 방법을 택하였다. 히스토그램 매칭 시에는 Bhattacharyya 거리를 계산하는 방법을 이용하였다. 결과적으로 제안하는 접근법은 수중로봇의 영상처리 분야에 다음과 같은 공헌을 할 것으로 기대한다. 1) 제안하는 방법은 카메라의 움직임으로 생기는 물체의 자세변화나 크기 변화에도 강인하게 대처할 수 있으며 2) 카메라 센서를 통한 방법이므로 초음파 센서 등의 기기들에 비하여 가격 경쟁력이 우수하다. 3) 또한 본 논문에서는 일반적으로 많이 쓰이는 특징 점을 기반으로 한 방법이 탁도 변화에서는 형태를 기반으로 한 방법보다 열등할 수 있음을 실험을 통하여 보였다. 4) 마지막으로 제안된 방법의 성능을 기존의 방법들과 비교하여 수치적으로 검증해 보았다.