본 논문은 가우시안 확률분포함수 (Gaussian Probability Distribution Function) 데이터 군집화를 위해 중심신경망 (Centroid Neural Network, CNN)에 Bhattacharyya 커널을 적용한 군집화 알고리즘 (Bhattacharyya Kernel based CNN, BK-CNN)을 제안한다. 제안된 BK-CNN은 무감독 알고리즘인 중심신경망을 기반으로 하고 있으며, 커널 방법을 이용하여 데이터를 특징공간에서 투영한다. 입력공간의 비선형 문제를 선형적으로 해결하기 위해 제안한 커널 방법인데, 확률분포 사이의 거리측정을 위해 Bhattacharyya 거리를 이용한 커널방법을 사용하였다. 제안된 BK-CNN을 영상데이터 분류의 문제에 적용했을 때, 제안된 BK-CNN 알고리즘이 Bhattacharyya 커널을 적용한 k-means, 자기조직지도(Self-Organizing Map)와 중심 신경망등의 기존 알고리즘보다 1.7% - 4.3%의 평균 분류정확도 향상을 가져옴을 확인할 수 있었다.
음성 인식 시스템은 정확하지 않게 입력된 음성으로부터 학습 모델을 구성하고 유사한 음소 모델로 인식하기 때문에 인식률 저하를 가져온다. 따라서 본 논문에서는 바타차랴 알고리즘을 이용한 음성 인식 최적 학습 모델 구성 방법을 제안하였다. 음소가 갖는 특징을 기반으로 학습 데이터의 음소에 HMM 특징 추출 방법을 이용하였으며 유사한 학습 모델은 바타챠랴 알고리즘을 이용하여 정확한 학습 모델로 인식할 수 있도록 하였다. 바타챠랴 알고리즘을 이용하여 최적의 학습 모델을 구성하여 인식 성능을 평가하였다. 본 논문에서 제안한 시스템을 적용한 결과 음성 인식률에서 98.7%의 인식률을 나타내었다.
In this paper, we propose a feature extraction method based on Bhattacharyya distance for multiclass problems. The Bhattacharyya distance provides a valuable information in determining the effectiveness of a feature set and has been used as separability measure for feature selection. Recently, a feature extraction algorithm hat been proposed for two normally distributed classes based on Bhattacharyya distance. In this paper, we propose to expand the previous approach to multiclass cases. Experiment results show that the proposed method compares favorably with the conventional methods.
어휘 인식 시스템은 학습 모델을 구성하여 인식하므로 구성되어진 모델에서 벗어난 어휘의 입력과 유사한 어휘의 입력은 인식하지 못하거나 유사한 어휘로 인식되어 인식률 저하가 나타난다. 이런 경우 인식 모델을 확장할 수 있도록 재구성하거나 인식 모델 구성 시 확장성을 반영하므로 해결할 수 있다. 본 논문에서는 모델 구성 시 확장성을 반영할 수 있는 모수 추정을 위한 베이시안 기법을 사용하여 바타차랴 알고리즘 음성 인식 학습 모델 구성 방법을 융합하여 제안하였다. 음소가 갖는 특징을 기반으로 학습 데이터의 음소에 모수 추정을 위한 베이시안 기법을 이용하였고 유사한 학습 모델은 바타챠랴 알고리즘을 이용하여 정확한 학습 모델로 인식하도록 하였다. 바타챠랴 알고리즘 인식 모델을 구성하여 인식 성능을 평가하였다. 본 논문에서 제안한 시스템을 적용한 결과 어휘 인식률에서 97.5%의 인식률과 1.2초의 학습 시간을 나타내었다.
본 연구의 핵심은 하이퍼스펙트럴영상에 정준상관분류기법을 적용할 때, 최적의 분광밴드를 찾아내는 유효밴드 선정 및 추출기법은 무엇인가를 알아내는 것이다. 본 연구에서는 미국의 Purdue University에서 개발된 Multispec$^{(C)}$ 소프트웨어를 사용하여 각각의 분리도 결정기법에 따른 최적의 유효밴드를 선정하였다. 사용된 분리도 결정기법은 Divergence, Transformed Divergence, Bhattacharyya, Mean Bhattacharyya, Covariance Bhattacharyya, Non Covariance Bhattacharyya로서 총 6가지이다. 특징추출을 위해 Erdas Imagine과 ENVI 소프트웨어를 사용하여 PCA 변환과 MNF 변환을 수행하였다. 유효밴드 선정 및 특징추출의 효과에 대한 비교평가를 위해, 정준상관분류기법에 의한 토지피복분류작업을 수행하였다. 1차 선별된 60개 밴드를 사용한 정준상관분류의 정확도는 71.8%이며, 정준상관분류를 사용하여 가장 높은 분류정확도를 얻은 방법은 Noncovariance Bhattacharyya 적용 후 정준상관분류를 수행한 경우로서 전체정확도 79.0% 이다. 결론적으로 정준상관분류에 의한 하이퍼스펙트럴영상 분류에서는 유효밴드선정기법으로 사실상 Noncovariance Bhattacharyya 기법만 유용하였으며, 나머지 유효밴드 선정기법(Divergence 제외)과 특징추출기법은 정준상관분류에서는 오히려 분류정확도가 하락함을 확인하였다.
본 논문은 물체 추적에 적합한 새로운 형식의 히스토그램 모델을 제안한다. 제안하는 색상 히스토그램은 양자화 된 각 색상요소에 대해 픽셀의 개수뿐만 아니라 평균 위치 정보 그리고 평균 위치로부터 일정하게 떨어진 영역에 속하는 픽셀들의 색상평균값을 포함한다. 또한 제안하는 히스토그램간의 유사도를 나타내기 위하여 Bhattacharyya 거리를 기본으로 새로운 유사도 함수를 정의하고 mean shift 기법에 적용한다. 기존의 mean shift 기반 기법들과는 달리 본 논문에서 제안하는 알고리즘은 물체 주변 배경 영역에 물체와 비슷한 색상이 존재하더라도 강건한 물체 추적이 가능하다. 실험 결과는 기존 기법들과의 비교를 통하여 개선된 추적 결과를 보여준다.
어휘 인식 시스템은 구성되어진 모델에서 벗어난 어휘의 입력과 유사한 어휘의 입력은 인식하지 못하거나 유사한 어휘로 인식되어 인식률 저하가 나타나며, 기존의 시스템은 벡터 값을 모델로 만들어 데이터베이스로 구성하여 어휘 인식에 사용하였다. 어휘 인식을 위한 탐색 중에 형성되는 모델은 데이터베이스로 구성되어 있지 않아 인식할 수 없는 단점이 존재한다. 따라서 본 논문에서는 특징 벡터 모델을 기반으로 바타챠랴 거리 측정법을 이용한 베이시안 인식 모델을 구성하여 탐색 중에 형성되는 벡터 모델을 인식할 수 있도록 유도하였으며, 위너 필터를 적용하여 인식률을 향상시켰다. 2 방법을 융합하여 실험한 결과 향상된 신뢰도로 인해 높은 인식 성능을 확인하였으며, 본 논문에서 제안한 측정법을 이용하여 기존의 방법들에 비하여 평균 98.2%의 성능을 나타내었다.
최근 평균이동(mean shift) 알고리즘과 같은 커널 기반의 추적 알고리즘이 활발하게 연구되고 있다. 이러한 방식의 알고리즘은 커널이 제공하는 컬러 히스토그램 정보와 약간의 공간적 정보를 이용하는 방식으로 적은 연산량으로 추적을 수행할 수 있는 장점을 지니고 있다. 그러나 공간성을 확보하기 위한 등방성 커널과 유사성을 비교하기 위한 바타차야 계수를 사용하기 때문에 발생하는 불안정성이 존재한다. 본 논문은 커널과 바타차야 계수의 사용이 왜 알고리즘의 불안정성을 야기 시킬 수 있는지에 대해 분석한다. 또한 이 분석을 바탕으로 새로운 추적 알고리즘을 제안한다. 제안한 알고리즘은 표적을 구성하는 컬러별 중심을 이용하는 방법으로 표적의 컬러, 컬러별 화소의 빈도, 공간적 정보 등이 반영된다. 제안한 방법은 평균 이동 방법보다 결과의 오류 비율이 적으며, 다음 프레임에서의 표적 위치가 반복 없이 한차례의 연산으로 얻어진다. 또한, 낮은 프레임 율 및 일부 폐색이 발생하여 평균 이동 방법으로는 실패하는 상황에서도 성공적으로 동작한다.
Kim, Dae-Hwan;Jung, Seung-Won;Suryanto, Suryanto;Lee, Seung-Jun;Kim, Hyo-Kak;Ko, Sung-Jea
ETRI Journal
/
제34권3호
/
pp.399-409
/
2012
In this paper, we propose a new color histogram model for object tracking. The proposed model incorporates the color arrangement of the target that encodes the relative spatial distribution of the colors inside the object. Using the color arrangement, we can determine which color bin is more reliable for tracking. Based on the proposed color histogram model, we derive a mean shift framework using a modified Bhattacharyya distance. In addition, we present a method of updating an object scale and a target model to cope with changes in the target appearance. Unlike conventional mean shift based methods, our algorithm produces satisfactory results even when the object being tracked shares similar colors with the background.
본 논문에서는 수중로봇에 쓰일 수 있는 카메라 영상을 기반으로 하는 인공표식물의 인식 및 추종 기법을 제안한다. 문제를 풀기 위해 제안된 방법은 인식과 추종의 두 개의 단계로 이루어져 있으며 인식단계에서는 물체의 외형에 관한 특징을 분석한 후 비선형 최적화 알고리즘을 통하여 알맞은 목표물로 분류한다. 이 후 추종 단계에서는 분류된 목표물에서 색깔 히스토그램을 추출한 후 meanshift 추종 법을 이용하여 지속적으로 추종하는 방법을 택하였다. 히스토그램 매칭 시에는 Bhattacharyya 거리를 계산하는 방법을 이용하였다. 결과적으로 제안하는 접근법은 수중로봇의 영상처리 분야에 다음과 같은 공헌을 할 것으로 기대한다. 1) 제안하는 방법은 카메라의 움직임으로 생기는 물체의 자세변화나 크기 변화에도 강인하게 대처할 수 있으며 2) 카메라 센서를 통한 방법이므로 초음파 센서 등의 기기들에 비하여 가격 경쟁력이 우수하다. 3) 또한 본 논문에서는 일반적으로 많이 쓰이는 특징 점을 기반으로 한 방법이 탁도 변화에서는 형태를 기반으로 한 방법보다 열등할 수 있음을 실험을 통하여 보였다. 4) 마지막으로 제안된 방법의 성능을 기존의 방법들과 비교하여 수치적으로 검증해 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.