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In this paper, we propose a new color histogram model 
for object tracking. The proposed model incorporates the 
color arrangement of the target that encodes the relative 
spatial distribution of the colors inside the object. Using 
the color arrangement, we can determine which color bin 
is more reliable for tracking. Based on the proposed color 
histogram model, we derive a mean shift framework using 
a modified Bhattacharyya distance. In addition, we 
present a method of updating an object scale and a target 
model to cope with changes in the target appearance. 
Unlike conventional mean shift based methods, our 
algorithm produces satisfactory results even when the 
object being tracked shares similar colors with the 
background. 
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I. Introduction 

Object tracking is a fundamental task in the field of computer 
vision, and its objective is to identify the location of the object 
of interest from frame to frame. Selecting the features suitable 
to represent the object is crucial to the performance of object 
tracking. The commonly used features are color, edge, optical 
flow, and texture [1]. Among several tracking schemes using 
various features, the mean shift algorithm using color 
histograms is widely used [2]-[4]. Comaniciu and others [2] 
presented the kernel-based tracking (KBT) algorithm that uses 
radially symmetric spatial kernels to represent objects. While 
KBT is computationally inexpensive and tracks the object 
successfully even when the target object is partially occluded, it 
tends to fail when the background bears a similar color to the 
target object. 

To improve the KBT [2], Birchfield and Rangarajan [5], [6] 
proposed spatiograms that include spatial means and 
covariances for each histogram bin to incorporate the spatial 
information. In addition, Collins and others [7] treated tracking 
as a binary classification problem and used online feature 
selection to switch to the most discriminative color space from 
a set of different color spaces according to localization based 
on mean shift. This work was extended by Wang and Yagi [8] 
who represented the target using reliable features selected from 
color and shape-texture cues. In recent research, Ning and 
others [9] used the joint color-local binary pattern (LBP) 
histogram to represent a target object and then applied it to the 
mean shift framework. Wang and others [10] presented a 
fusion scheme to combine multiple spatially distributed 
fragments effectively.  

In this paper, we propose an improved mean shift algorithm 
capable of tracking the object successfully even when its color 
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is shared by its surroundings. The proposed method utilizes the 
color arrangement of the target object for object modeling. The 
color arrangement encodes the information about the spatial 
relationship among the colors that compose the object. During 
tracking, the reliability of each color feature is calculated 
adaptively based on the consistency of the color arrangement 
information. Moreover, we present an object scale prediction 
scheme and a target model update scheme to handle changes in 
the target appearance. 

This paper is organized as follows. In section II, we first 
present a brief overview of the spatiogram and its limitation. In 
section III, we introduce our new histogram model and derive 
the mean shift procedure using the modified similarity measure, 
followed by the scale prediction and target model update 
schemes. In section IV, we demonstrate through experiment the 
advantages of our method over existing algorithms, and we 
conclude our work in section V. 

II. Spatiogram-Based Tracking 

Before introducing the proposed method, it is worthwhile to 
review the spatiograms [5] and discuss some drawbacks of the 
tracking method based on spatiograms. 

The spatiogram is an extended histogram that contains the 
mean and covariance of pixel locations in addition to the pixel 
count of a histogram bin. Let 1,...,{ }

hi i N=x  be a set of pixel 
coordinates inside a region R centered at location y, and Nh is 
the number of pixels in R. The spatiogram of R is represented 
as 

( ) ( ), ( ), ( ) ,   1,..., ,R b b bn b Bμ=< Σ > =H y y y y      (1) 

where nb is the kernel-weighted number of pixels whose 
quantized values fall into the b-th bin, µb and Σb are the mean 
vector and covariance matrices of the pixel coordinates 
corresponding to the b-th bin, respectively, and B is the total 
number of bins in the spatiogram. Mathematically, 

2

1
( ) (|| ( ) / || ) ,

hN

b h i ib
i

n C k h δ
=

= −∑y x y         (2) 

1
1

1( ) ( ) ,
h

h

N

b i ibN
iibi

μ δ
δ =

=

= −∑
∑

yxy            (3) 

1
1

1( ) ( ( )) ( ( )) ,
h

h

N
T

b i b i b ibN
iibi

μ μ δ
δ =

=

Σ = − −∑
∑

y y yx x   (4) 

where Ch is a normalization constant such that 
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and a bandwidth h defines the scale of R. k(·) is a kernel 
function that weights the spatiogram entry based on the pixel 

distance from the object center, and ibδ  is 1 if the value of xi 
falls into the b-th bin and 0 otherwise. Given the target model  
spatiogram, the tracking objective is to find the location at 
which the candidate model spatiogram is most similar to the 
target model. 

The tracking method based on spatiograms has two 
limitations. First, it is sensitive to slight spatial changes of the 
features as analyzed in [11]. Second, the spatiogram-based 
mean shift algorithm tends to converge to the background 
region when the object being tracked bears a similar color to 
that of the background. The existence of background pixels 
having a similar color to that of the object can decrease the 
spatial mean difference between the target and candidate 
models since the spatial mean difference is calculated based on 
the center obtained in the previous frame.  

III. Proposed Method 

The proposed method utilizes the color arrangement of the 
target object to judge whether a similar color exists in the 
background region or not. In other words, the candidate region 
is regarded to be contaminated by the background when the 
spatial distribution of the colors inside the region is different 
from that of the target object. For instance, as shown in Fig. 
1(a), the proposed method models the information that the 
upper body with a green color has a yellow head at the top of 
the body and red pants at the bottom of the body. During a 
tracking process, the proposed method infers that the yellow 
color region is spatially changed by the similar colored pixels 
in the background region when the color distribution near the 
yellow region differs from the target model as shown in Fig. 
1(d). In other words, the proposed method computes the 
reliability that represents how the background region influences 
the target model by referring to the color arrangement and then 
utilizes it for tracking. 

First, we introduce our new color histogram model for object 
tracking. Based on the proposed color histogram model, we 
describe a mean shift procedure using the modified 
Bhattacharyya distance. We assume that the color arrangement 
of the target is not severely changed between consecutive 
frames. 

The proposed tracking method consists of the following 
steps. The target object obtained from the detection process is 
represented by the proposed histogram model in the initial 
frame. Then, in the subsequent frame, a candidate region 
whose location comes from the previous frame is modeled in 
the same way as target modeling. After constructing two 
models for the target and candidate regions, we localize the 
target object in the subsequent frame by finding the position 
that maximizes the similarity between the two models. Finally,  
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Fig. 1. (a) Target object and Gaussian mask in initial frame, (b)
candidate region with expansion in subsequent frame, (c)
location of Gaussian mask indexed by reference vector
for b3, and (d) location of Gaussian mask indexed by
reference vector for b1. 
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we update both the object scale and the target model to cope 
with the changes in the target appearance. These steps are 
explained in the following subsections.  

1. Target Representation 

Let T be the region of the target object to be tracked, centered 
at y0 in the initial frame. The proposed method models T as  

( ) ( ), ( ), ( ), ( ) ,T b b b bn μ σ′ ′ ′ ′ ′=< Φ >0 0 0 0 0P y y y y y      (5) 

where ( )bn′ 0y and ( )bμ′ 0y  are as in (2) and (3), respectively, 
0( )bσ ′ y is the standard deviation vector of the pixels in the b-th 

bin, and ( )b′Φ 0y  is the Gaussian-weighted average of the 
pixels around y0. Mathematically, 

( ) ( ) ( ),b w rgbΦ = ∗y y y             (6) 

where the notation ∗  denotes the convolution sum, w is the 
Gaussian filter, and rgb(y) is the RGB vector at location y. We 
calculate the convolution sum for each RGB channel 
independently. The Gaussian filter size K proportional to the 
object size is given by 

max{ min( , ),1},x yK s sτ= ⋅            (7) 

where sx and sy are the width and height of the target object, 
respectively, and τ =0.3 is a predefined ratio. 

Similarly, the candidate region R, centered at location y in the 
subsequent frame, can be modeled as 

0( ) ( ), ( ), ( ), ( ( ) ( )) .R b b b b b bn μ σ μ μ′=< Φ + − >y y y y y y yP (8) 

In our modeling, R is expanded by Δ pixels in the x and y 
directions from T, to include pixels that belong to the target 
object. Δ is a parameter depending on the speed of the moving 
object, and Δ=5 is sufficient for all the test videos in our 
experiments. In the candidate model, the position of the 
Gaussian mask used to calculate the weighted average ( )bΦ ⋅  
at each color bin is indexed by 0( )bμ′ y  from ( )bμ y . Note 
that 0( )bμ′ y  comes from the target model, and hereafter we 
call the vector the reference vector. If the change of the spatial 
mean in the b-th bin is negligible, the weighted average 

( )bΦ ⋅ of the candidate model is similar to 0( )b′Φ y  of the 
target model. In the presence of occlusion or in the case that the 
background bears a color similar to that of the object, the mean 
location of a color bin is shifted and the corresponding ( )bΦ ⋅  
will be different from ( ).b′Φ 0y  Thus, by comparing ( )bΦ ⋅  
with 0( )b′Φ y  at each color bin, we can determine the 
reliability of each bin during tracking. 

As an illustration, consider an object to be tracked in the 
initial frame as shown in Fig. 1(a). Assume that the target 
object consists of three colors corresponding to bins b1 
(yellow), b2 (green), and b3 (red). The mean locations of each 
color are represented by a white dot and labeled 

1 0( ),bμ′ y 2 0( )bμ′ y , and 3 0( ).bμ′ y  Figure 1(a) also shows the 
Gaussian mask placed on the object’s center, marked by a 
black dot. In Fig. 1(b), the border of the candidate region is 
delineated by a black outline. Note that due to the existence of 
the background whose color also falls into the bin b1, the mean 
location of the bin b1 is shifted. In Figs. 1(c) and (d), we show 
the Gaussian masks used for 3 ( )bΦ ⋅  and 1( ),bΦ ⋅  respectively. 
Unlike 3 ( ),bΦ ⋅  1( )bΦ ⋅  is different from 0( ),b′Φ y  indicating 
that the color bin b1 is not reliable for tracking. 

For simplicity, we hereafter use the simplified notation for 
the target model as , , ,b b b bn μ σ′ ′ ′ ′ ′=< Φ >P . 

2. Target Localization 

In this subsection, we derive the mean shift procedure to 
localize the target object in the subsequent frame. The basic 
mean shift method [2] is based on maximizing the 
Bhattacharyya coefficient given by 

1
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which measures the similarity between two histograms. 
Our proposed target localization method is based on 

maximizing the following modified Bhattacharyya coefficient 
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where cγ  is a constant value and | ( ) |b b′Φ − Φy  measures 
the distance between two color vectors [12]. 

A Taylor series expansion around 0( )n y  yields a linear 
approximation to the coefficient in (10): 
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To maximize the modified Bhattacharyya coefficient (10), 
the sum in the right-hand side of (14) has to be maximized 
since the left-hand side is independent of y. It represents the 
kernel density estimation computed with the kernel profile 

( )k ⋅  at y with the data xi weighted by vi. The target center, 
which is equal to the mode of the density, can be found 
iteratively using the mean shift procedure [2]. 

A new location y1 is thus given by  
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d
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x
 is the negative derivative of the 

kernel profile. As in [2], if the Epanechnikov kernel profile is 
used, the derivative of the kernel is constant and disappears: 
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The weight of each pixel in the candidate region, vi in (15), 
consists of the conventional KBT weights and our proposed 
reliability factor in (11).  

3. Scale Prediction 

The scale of the target often changes in time and thus the 
bandwidth h in (2) has to be predicted accordingly. This is 
possible due to the scale invariance property of the 
Bhattacharyya distance. To adapt the bandwidth, we utilize the 
standard deviation vector of the pixel coordinates in reliable 
bins. To determine whether a bin is reliable or not, we check 
two conditions based on the information from the localization 
step.  

The first is a mean shift weight obtained by (15), which 
indicates the probability of the pixel belonging to the target 
object. The i-th pixel quantized to the b-th bin is considered as 
a reliable candidate if 

max( ),  for 1, ,i j hj Nν ϕ ν≥ = " ,          (18) 

where 0.4ϕ =  in our experiment. Therefore, we can pick out 
the pixels that approximately distinguish the target shape from 
the background. 

We then apply the second condition to the bins consisting of 
the reliable candidate pixels. The color similarity ( )bΨ y  in 

 
Algorithm 1. (Scale prediction) 
•Initialization: 

After target localization, create a current candidate model 
curr ( )P y  on the region expanded by Δ  pixels in the x and y 

directions from the target rectangular box, 

     curr _curr _ curr _ curr

_ curr _ curr
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•Reliability check: 
Step1: Check the reliability by (18) using ′P and curr ( )P y . 
Step2: 

-Calculate a resized reference vector, 
_ resized _ resized _ _ resized _( ,  )b b x b yμ μ μ′ ′ ′=  

_ curr _ _ curr _
_ _

_ _
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,  b x b y

b x b y
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-Check the reliability by (19) using b′Φ  and _ curr ( )bΦ ⋅  that 

is recalculated by  
       _ curr _ curr _ curr _ resized( ) ( ( ) )b b b bμ μ′Φ ⋅ = Φ + −y y . 

•Calculation of scale update ratio: 
For the reliable bins, accumulate the standard deviation ratio to 
update the object rectangle size, 

_ curr _ _ curr _

_ _

( ) ( )1( , ) ,  
| |

b x b y
x y

b b Zb x b y

σ σ
π π

σ σ∈Ζ ∈
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∑ ∑
y y

π , 

where π  is a scale update ratio vector, Z is a set of reliable bins, 
and |Z| is the number of reliable bins. 
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Algorithm 2. (Target model update) 
•Initialization: 

Create a new target model new′P on the resized target region after 
scale prediction,   

new _ new _ new _ new _ new, , ,b b b bn μ σ′ ′ ′ ′ ′=< Φ >P . 
•Update of bn′ :  

_ (1 )b b new bn sn s n′ ′ ′= + − , 
where s is the Bhattacharyya coefficient between bn′  and 

_ newbn′  in (9).  
•Update of bμ′ : 

_ _( , )b x b x y b yμ π μ π μ′ ′ ′= . 
•Update of b′Φ : 

Recalculate _ newb′Φ  at the position of _ newb bμ μ′ ′+ −y . If the 
color similarity between b′Φ  and _ newb′Φ  satisfies (19), b′Φ  

is updated as  
_ new (1 )b b bκ κ′ ′ ′Φ = Φ + − Φ , 

where 0.7κ =  in (19). 

(11) is used as the second criterion. The b-th bin is determined 
as reliable if 

( ) ,  b bκΨ ≥ ∈ ϒy ,             (19) 

where 0.7κ =  in our experiment and ϒ  is a set of bins that 
passes the previous step. We eliminate the bins affected by a 
background region even though they have high mean shift 
weights. If the number of reliable bins remaining after the two 
reliability checks is equal to zero, the size update is skipped. 
We found that a strict reliability check is required for the stable 
update of the object size and confirmed that our parameter 
setting of 0.4=ϕ  and 0.7κ =  produces the accurate scale 
prediction results. The proposed scale prediction scheme is 
described in Algorithm 1. 

For applying a statistical approach to scale prediction, we 
estimate the object size using not only our prediction scheme 
but also a Kalman filtering method [13], [14]. We obtain 
smooth scale adaptation results by combining the Kalman filter 
approach. The object size updated by π  is utilized as a 2×1 
measurement vector in the Kalman filtering method, and a 
Kalman state model in our system is given by 

1A= +s sk k - w ,             (20) 

where the 2×1 state vector 2∈ℜs consists of two elements, 
object width and height. The 2×2 identity matrix A is a process 
model and the random variable w represents the process noise 
with normal distribution p(w)~N(0, Q). In our experiments, we 
set 

1 0
0 1

Q ⎡ ⎤
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⎣ ⎦
,

20 0
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,  (21) 

where R is the covariance matrix for the measurement noise  

 

Fig. 2. Comparison of mean shift weight map obtained by KBT
(white rectangle), spatiogram (red), and proposed method
(black) on “noisy ground.” 
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and P0 is the initial error covariance. 

4. Target Model Update 

It is necessary to update the target model since the 
appearance of a target tends to change during a tracking 
process. To update the target model adaptively, we consider 
three factors: the similarity between the histogram models in 
(9), the scale update ratioπ , and the color similarity ( )bΨ y . 
We describe a method for updating elements of the proposed 
target model in Algorithm 2. The initial target size and initial 

bσ ′  are saved and maintained to be used in the scale prediction 
scheme. 

IV. Experiment Results  

To compare the performance between the proposed 
algorithm and the existing algorithms, we challenge the 
problem of tracking the target object that bears similar colors to 
those in the background. The dataset contains seven sequences, 
including those of public datasets and our dataset: 
“PETS09_S2L1_V1” (PETS2009) and “PETS-09_S2L1_V6” 
(PETS2009) (of public dataset PETS2009 [15]), 
“OneStopMoveNoEnter2front” (of public dataset CAVIAR 
[16]), and “crowd,” “summer beach,” “white lane,” and “noisy 
ground” (of our dataset). The initialization of tracking is set by 
manually marking the target object box in the first frame, as in 
[17]-[19], and the same initialization is used for all the trackers. 
For the object modeling, a 16×16×16 bin histogram is used for 
the RGB color image in the object region.  

1. Comparison of Mean Shift Weight Maps  

Figure 2 shows the tracking results of the KBT algorithm 
(white rectangle) [2], the spatiogram-based method (red) [5], 
and the proposed method (black). The mean shift weight of 
each pixel in the candidate region is shown right next to the 
input image. The pixels with higher weights are represented by 
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Fig. 3. (a), (b) Representation of pixels that have similar colors in
background region; (c), (d) reference vector in 10th and
120th frames. 

(a) (b) (c) (d) 

 
 

 

Fig. 4. (a), (b) Representation of pixels that have no similar color
in background region; (c), (d) reference vector in 10th and
120th frames. 

(a) (b) (c) (d) 

 
 
higher intensity, indicating higher pixel probability to be the 
target object. As shown in Fig. 2, the distinction between the 
target object and the background in the weight map for the 
KBT algorithm is not clear because of the pixels that bear 
similar colors to those in the background. Spatiogram-based 
tracking also produces high weighting pixels in the background. 
On the other hand, the proposed method clearly discriminates 
target and background pixels. The imprecise weight maps of 
the existing algorithms eventually lead to tracking failure. 

Figures 3(a) and (b) contain white dots, which show the 
locations of the pixels that belong to the 8th bin for each RGB 
channel in the different frames, respectively. In addition, the 
reference vectors from the mean locations for the 8th bin are 
shown in Figs. 3(c) and (d). Figure 3(c) represents the mean 
location as a bold circular point and the reference vector as an 
arrow from the mean. The color on the region pointed to by the 
reference vector from the mean in Fig. 3(d) is very different 
from that of the target model in Fig. 3(c) because the 
background pixels are quantized to the same bin as the target.            

Figure 4 shows the result to the contrary. The positions of the 
pixels quantized to the 4th bin for each RGB channel are 
shown in Figs. 4(a) and (b). The color similarity between the 
bin of the target in Fig. 4(c) and that of the candidate region in 
Fig. 4(d) is very strong. By utilizing the color similarity 
between b′Φ  and ( )bΦ ⋅  for each bin between the two 
models, we can give different weights to each bin depending 
on not only the pixel counts but also the color arrangement of 
the target and candidate model. 

2. Comparison of Tracking Performance  

For quantitative performance evaluation, the tracking results  

 

Fig. 5. Tracking results on “PETS09_S2L1_V1” in PETS2009
dataset with seven experiments using KBT [2] (white),
spatiograms [5] (red), online feature selection [7] (blue
dashed), extended feature selection [8] (violet dotted),
LBP [9] (green dashed), MF [10] (cyan dotted), PF [20]
(pink), and proposed method (black).  

 
are compared with those produced by the KBT [2], the 
spatiogram-based method [5], online feature selection [7], 
extended online feature selection [8], the LBP-based method 
[9], the particle-filter-based method [20], and the multiple-
fragments-based method [10]. 

Figure 5 shows the tracking results on “PETS09_S2L1_V1” 
using seven existing methods and the proposed algorithm. As 
discussed in the subsection IV.1, the tracker [2] fails when a 
similarly colored object passes by the target object, and the 
tracker [5] misses the target in the case of partial occlusion due 
to its sensitivity to spatial differences. The tracker [7] leads to a 
tracking failure, as analyzed in [8], since the selected feature 
space dimension is limited to a low dimension. Note that the 
features in [7] are not totally independent and may be 
correlated, so it is relatively sparser than the proposed feature 
space dimension. The tracker [8] causes tracking failure since 
the number of features set (only seven features) is not enough 
to handle the distraction. In the case of [9], the number of 
samples tends to be decreased significantly in the target model 
since only the pixels that correspond to the nine uniform 
patterns are used. In our experiments, only about 6.6% of the 
pixels of the target region are used for target modeling. This 
reduced number can cause low discriminability and result in 
unstable tracking. Although the tracker [10] uses a multiple-
fragments framework, the structure of the fragments in [10] is 
not updated during the whole process, it is not tolerant to 
position error, and it changes in object size. Furthermore, a 
one-dimensional histogram is computed for each R, G, and B 
channel so that discriminability is lower than our three- 
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Fig. 6. Tracking results on “white lane,” where the overlaid
rectangles represent each algorithm in the same manner
of Fig. 5.  

 
dimensional model. 

Figure 6 shows the experiment results for “white lane,” 
where the pants of the person being tracked bear a similar color 
to that of the white lane. The trackers [2], [8], and [9] are 
distracted by the white lane and ultimately miss the target 
object.  

In Table 1, the number of frames tracked successfully and the 
Euclidean distance are used to measure the performance of the 
tracking results for the proposed scheme and the seven existing 
trackers in six test videos. Tracking is considered to be a failure 

if the bounding box of the target object has no overlap with the 
ground truth box. The Euclidean distance is computed between 
the center of the tracking box and the ground truth box. 
Experiment results indicate that the proposed scheme is 
significantly better than five schemes ([2], [5], [8], [9], and 
[10]) and slightly better than [7] and [20] in terms of 
consistently having considerably less errors. Reference [20] 
shows slightly better performance than our method in videos 
“noisy ground” and “OneStopMove”; however, the background 
scene is required to model the background appearance. In other 
words, the method cannot be applied to videos captured from a 
moving camera, such as in the video “crowd.” 

3. Comparison of Computational Complexity 

All of our experiments run on a standard PC (Intel i5 3.3 
GHz with 4.00 GB RAM), and the resolution of test videos is 
640×480. The comparison results of the computation speed in 
terms of average time required to track one video frame are 
shown in Table 2. The proposed method takes three to five 
times longer than the tracker [2], but the computation time is 
sufficiently acceptable for real-time applications. The trackers 
[5], [9], and [10] have similar complexity to the proposed 
method. Even the tracker [7] has a similar error rate compared 
to the proposed method for localization; its computation time 
takes almost 20 to 30 times (depending on the target object 
size) longer than that of the proposed scheme for all the test 
videos. The feature selection process using Gaussian filtering  

Table 1. Quantitative performance evaluation measures of tracking simulations. 

Frames tracked (frames) 

Sequence KBT [2] Spat. [5] OFS [7] EFS [8] LBP [9] MF [10] PF [20] Proposed 

PETS09_S2L1_V1 64/127 56/127 57/127 57/127 74/127 57/127 62/127 127/127 

PETS09_S2L1_V6 59/94 7/94 48/94 82/94 12/94 15/94 90/94 95/95 

crowd 171/225 19/225 225/225 170/225 170/225 225/225 107/225 225/225 

white lane 180/225 225/225 225/225 115/225 73/225 225/225 225/225 225/225 

noisy ground 301/301 247/301 301/301 301/301 298/301 301/301 301/301 301/301 

OneStopMoveNo. 255/613 253/613 573/613 612/613 335/613 285/613 613/613 613/613 

Euclidean distance (pixels) 

Sequence KBT [2] Spat. [5] OFS [7] EFS [8] LBP [9] MF [10] PF [20] Proposed 

PETS09_S2L1_V1 143.1 86.5 80.7 161.7 68.9 95.1 64.2 5.2 

PETS09_S2L1_V6 41.9 160.2 66.1 47.9 135.0 127.9 27.0 9.3 

crowd 63.8 310.1 7.1 65.9 65.7 10.9 138.3 7.7 

white lane 29.0 10.5 4.5 85.2 188.6 11.1 9.2 2.5 

noisy ground 4.5 22.1 2.5 5.3 4.8 1.9 1.9 3.0 

OneStopMoveNo. 128.3 126.9 35.4 36.2 50.2 106.4 15.4 25.6 
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Table 2. Comparison of computation time required to track one video frame.  

Sequence KBT [2] Spat. [5] OFS [7] EFS [8] LBP [9] MF [10] PF [20] Proposed 

PETS09_S2L1_V1 0.72 2.69 95.57 75.23 4.01 4.21 85.87 3.56 

PETS09_S2L1_V6 2.57 8.84 255.3 82.16 7.54 9.99 85.99 8.96 

crowd 5.23 17.65 395.71 95.66 11.57 32.96 88.85 15.33 

white lane 1.17 4.22 102.38 77.60 4.62 8.60 88.97 5.15 

noisy ground 0.25 0.96 31.55 20.72 1.38 1.26 23.71 1.12 

OneStopMoveNo. 1.04 4.03 141.70 77.04 5.15 3.62 85.58 4.46 

Average 1.83 6.40 170.37 71.40 5.71 10.11 76.50 6.43 

 

(ms)

 

Fig. 7. Experiment results for the proposed scale prediction and
target model update scheme on “crowd” captured by
moving camera.  

 
for 49 feature candidates [7] is mainly responsible for the 
heavy complexity in our analysis. The trackers [8] and [20] 
have relatively lower complexity compared to [7] but still take 
10 to 20 times longer than the proposed method. 

4. Comparison of Scale Prediction  

The result of the proposed scale prediction scheme with the 
target model update is shown in Fig. 7. In Fig. 7, for the video 
“crowd” captured by a moving camera, the size of the target is 
successively tracked. Using our scale prediction scheme, we 
can control a zoom module in a real-time pan-tilt-zoom 
tracking system. To evaluate the robustness of the proposed 
scale prediction scheme, the proposed method is compared 
with two existing size prediction methods in KBT [2] and level 
sets [21], [22]. We use the Dice coefficient [23] to 
quantitatively compare the prediction results obtained by the 
three methods. Given ground truth object region 1Ω  and 
tracked region 2Ω , the Dice coefficient is defined as 

       1 2
1 2

1 2

2 ( )
( , )

( ) ( )v
Area

d
Area Area

Ω Ω
Ω Ω =

Ω + Ω
∩

.      (22) 

The Dice coefficient varies from 0 to 1 and measures the 
degree of similarity between the two different regions. Figure 8 
shows the Dice coefficient versus the frame number of the 
proposed scheme and the two existing methods. As can be seen, 
the proposed predictor gives the best results in the six test 
sequences. The level sets method tends to have the weakness 
that the final contour expands to the similarly colored 
background region or shrinks when tracking fails. Likewise, 
the output of KBT approximately finds the scale of the target 
but accuracy is relatively lower compared to the proposed 
method. 

V. Conclusion 

We proposed a new color histogram model suitable for 
object tracking. The proposed model includes the color 
arrangement information for each bin of the histogram. Based 
on the proposed histogram model, we derived the mean shift 
procedure using the modified Bhattacharyya coefficient. In 
addition to target modeling and localization, we proposed the 
scale prediction and target model update methods to cope with 
changes in the target appearance. 

Experiment results showed that the proposed tracking 
algorithm produces good results even when similar colors exist 
in the background region. In addition, the proposed scale 
predictor with the target model update scheme gives accurate 
and smooth prediction results for test sequences. The proposed 
tracking system is performed in real-time with an average 
computational time of 6.43 ms for objects of various sizes on 
640×480 test videos. 

As a future work, we will adopt a failure detection method to 
improve the robustness of the proposed algorithm. When the 
target tracking fails due to sudden changes of illumination or a 
long duration of heavy occlusions, we plan to identify the 
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Fig. 8. Dice coefficients between tracked and ground truth regions for the six videos: (a) PETS09_S2L1_V1, (b) PETS09_S2L1_V6,
(c) OneStopMoveNoEnter2front, (d) crowd, (e) white lane, and (f) summer beach. 

0 

0.1 

0.2 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0

1 11 21 31 41 51 61 71 81 91 101 111 121
Frame number 

D
ic

e 
co

ef
fic

ie
nt

 

KBT 
Level sets 
Proposed 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
Frame number 

D
ic

e 
co

ef
fic

ie
nt

 

KBT
Level sets 
Proposed 

(a) (b) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0

1 31 61 91 121 151 181 211 241 271 301 331 361 391421451
Frame number 

D
ic

e 
co

ef
fic

ie
nt

 

KBT 
Level sets 
Proposed 

1 21 41 61 81 101 121 141 161 181 201 221
Frame number 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
ic

e 
co

ef
fic

ie
nt

 
KBT
Level sets 
Proposed 

(c) (d) 

1 21 41 61 81 101 121 141 161 181 201
Frame number 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

D
ic

e 
co

ef
fic

ie
nt

 

KBT 
Level sets 
Proposed 

1 31 61 91 121 151 181 211 241 271 301 331 361
Frame number 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
ic

e 
co

ef
fic

ie
nt

 

KBT 
Level sets 
Proposed 

(e) (f) 

 
tracking failure and recover the tracking process. 
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