• Title/Summary/Keyword: Bhattacharyya

Search Result 96, Processing Time 0.045 seconds

Error Estimation Based on the Bhattacharyya Distance for Classifying Multimodal Data (Multimodal 데이터에 대한 분류 에러 예측 기법)

  • Choe, Ui-Seon;Kim, Jae-Hui;Lee, Cheol-Hui
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.147-154
    • /
    • 2002
  • In this paper, we propose an error estimation method based on the Bhattacharyya distance for multimodal data. First, we try to find the empirical relationship between the classification error and the Bhattacharyya distance. Then, we investigate the possibility to derive the error estimation equation based on the Bhattacharyya distance for multimodal data. We assume that the distribution of multimodal data can be approximated as a mixture of several Gaussian distributions. Experimental results with remotely sensed data showed that there exist strong relationships between the Bhattacharyya distance and the classification error and that it is possible to predict the classification error using the Bhattacharyya distance for multimodal data.

Estimation of Classification Error Based on the Bhattacharyya Distance for Data with Multimodal Distribution (Multimodal 분포 데이터를 위한 Bhattacharyya distance 기반 분류 에러예측 기법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.85-87
    • /
    • 2000
  • In pattern classification, the Bhattacharyya distance has been used as a class separability measure and provides useful information for feature selection and extraction. In this paper, we propose a method to predict the classification error for multimodal data based on the Bhattacharyya distance. In our approach, we first approximate the pdf of multimodal distribution with a Gaussian mixture model and find the bhattacharyya distance and classification error. Exprimental results showed that there is a strong relationship between the Bhattacharyya distance and the classification error for multimodal data.

  • PDF

Feature Extraction Method based on Bhattacharyya Distance for Multiclass Problems (Bhattacharyya Distance에 기반한 다중클래스 문제에 대한 피춰 추출 기법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.643-646
    • /
    • 1999
  • In this paper, we propose a feature extraction method based on Bhattacharyya distance for multiclass problems. The Bhattacharyya distance provides a valuable information in determining the effectiveness of a feature set and has been used as separability measure for feature selection. Recently, a feature extraction algorithm hat been proposed for two normally distributed classes based on Bhattacharyya distance. In this paper, we propose to expand the previous approach to multiclass cases. Experiment results show that the proposed method compares favorably with the conventional methods.

  • PDF

Feature Extraction Method Using the Bhattacharyya Distance (Bhattacharyya distance 기반 특징 추출 기법)

  • Choi, Eui-Sun;Lee, Chul-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.38-47
    • /
    • 2000
  • In pattern classification, the Bhattacharyya distance has been used as a class separability measure. Furthemore, it is recently reported that the Bhattacharyya distance can be used to estimate error of Gaussian ML classifier within 1-2% margin. In this paper, we propose a feature extraction method utilizing the Bhattacharyya distance. In the proposed method, we first predict the classification error with the error estimation equation based on the Bhauacharyya distance. Then we find the feature vector that minimizes the classification error using two search algorithms: sequential search and global search. Experimental reslts show that the proposed method compares favorably with conventional feature extraction methods. In addition, it is possible to determine how man, feature vectors arc needed for achieving the same classification accuracy as in the original space.

  • PDF

Centroid Neural Network with Bhattacharyya Kernel (Bhattacharyya 커널을 적용한 Centroid Neural Network)

  • Lee, Song-Jae;Park, Dong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.861-866
    • /
    • 2007
  • A clustering algorithm for Gaussian Probability Distribution Function (GPDF) data called Centroid Neural Network with a Bhattacharyya Kernel (BK-CNN) is proposed in this paper. The proposed BK-CNN is based on the unsupervised competitive Centroid Neural Network (CNN) and employs a kernel method for data projection. The kernel method adopted in the proposed BK-CNN is used to project data from the low dimensional input feature space into higher dimensional feature space so as the nonlinear problems associated with input space can be solved linearly in the feature space. In order to cluster the GPDF data, the Bhattacharyya kernel is used to measure the distance between two probability distributions for data projection. With the incorporation of the kernel method, the proposed BK-CNN is capable of dealing with nonlinear separation boundaries and can successfully allocate more code vector in the region that GPDF data are densely distributed. When applied to GPDF data in an image classification probleml, the experiment results show that the proposed BK-CNN algorithm gives 1.7%-4.3% improvements in average classification accuracy over other conventional algorithm such as k-means, Self-Organizing Map (SOM) and CNN algorithms with a Bhattacharyya distance, classed as Bk-Means, B-SOM, B-CNN algorithms.

A Study on Feature Selection and Feature Extraction for Hyperspectral Image Classification Using Canonical Correlation Classifier (정준상관분류에 의한 하이퍼스펙트럴영상 분류에서 유효밴드 선정 및 추출에 관한 연구)

  • Park, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.419-431
    • /
    • 2009
  • The core of this study is finding out the efficient band selection or extraction method discovering the optimal spectral bands when applying canonical correlation classifier (CCC) to hyperspectral data. The optimal efficient bands grounded on each separability decision technique are selected using Multispec$^{(C)}$ software developed by Purdue university of USA. Total 6 separability decision techniques are used, which are Divergence, Transformed Divergence, Bhattacharyya, Mean Bhattacharyya, Covariance Bhattacharyya, Noncovariance Bhattacharyya. For feature extraction, PCA transformation and MNF transformation are accomplished by ERDAS Imagine and ENVI software. For the comparison and assessment on the effect of feature selection and feature extraction, land cover classification is performed by CCC. The overall accuracy of CCC using the firstly selected 60 bands is 71.8%, the highest classification accuracy acquired by CCC is 79.0% as the case that executes CCC after appling Noncovariance Bhattacharyya. In conclusion, as a matter of fact, only Noncovariance Bhattacharyya separability decision method was valuable as feature selection algorithm for hyperspectral image classification depended on CCC. The lassification accuracy using other feature selection and extraction algorithms except Divergence rather declined in CCC.

A Bhattacharyya Analogue for Median-unbiased Estimation

  • Sung, Nae-Kyung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • A more general version of diffusivity based on total variation of density is defined and an information inequality for median-unbiased estimation is presented. The resulting information inequality can be interpreted as an analogue of the Bhattacharyya system of lower bounds for mean-unbiased estimation. A condition on which the information bound is achieved is also given.

Speech Recognition Optimization Learning Model using HMM Feature Extraction In the Bhattacharyya Algorithm (바타차랴 알고리즘에서 HMM 특징 추출을 이용한 음성 인식 최적 학습 모델)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.199-204
    • /
    • 2013
  • Speech recognition system is shall be composed model of learning from the inaccurate input speech. Similar phoneme models to recognize, because it leads to the recognition rate decreases. Therefore, in this paper, we propose a method of speech recognition optimal learning model configuration using the Bhattacharyya algorithm. Based on feature of the phonemes, HMM feature extraction method was used for the phonemes in the training data. Similar learning model was recognized as a model of exact learning using the Bhattacharyya algorithm. Optimal learning model configuration using the Bhattacharyya algorithm. Recognition performance was evaluated. In this paper, the result of applying the proposed system showed a recognition rate of 98.7% in the speech recognition.

Edge Detection Based on Bhattacharyya Distance for Color Images Using Adaptive Boundary and Thresholding

  • Badripour, Afarin;Lee, Chulhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.944-945
    • /
    • 2017
  • Color image edge detection is an important operation in many image processing areas. This paper presents a new method for edge detection based on the Bhattacharyya distance that can handle arbitrary boundaries by exploring several edge patterns. Experiments show promising results compared to some existing methods.

Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method (바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Vocabulary recognition system is providing inaccurate vocabulary and similar phoneme recognition due to reduce recognition rate. It's require method of similar phoneme recognition unrecognized and efficient feature extraction process. Therefore in this paper propose phoneme likelihood error correction improvement system using based on phoneme feature Bhattacharyya distance measurement. Phoneme likelihood is monophone training data phoneme using HMM feature extraction method, similar phoneme is induced recognition able to accurate phoneme using Bhattacharyya distance measurement. They are effective recognition rate improvement. System performance comparison as a result of recognition improve represent 1.2%, 97.91% by Euclidean distance measurement and dynamic time warping(DTW) system.