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A Bhattacharyya Analogue for Median—-unbiased Estimation
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Abstract

A more general version of diffusivity based on total variation of density is defined
and an information inequality for median-unbiased estimation is presented. The result-
ing information inequality can be interpreted as an analogue of the Bhattacharyya
system of lower bounds for mean-unbiased estimation. A condition on which the in-
formation bound is achieved is also given.
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1. Introduction

Diffusivity is a measure of spread for median-unbiased estimators defined by Sung et al
(1990a). It could be regarded as a local version of the risk curve introduced by Birnbaum
(1961). Sung (1990b) extended this measure to the multivariate case by introducing a general-
ized definition of median—-unbiasedness. A more general discussion about diffusivity in view of
comparing its role in median-unbiased estimation with its counterpart in mean-unbiased esti-
mation in relation to various versions of information inequalities can be found in Sung (1990c¢),
Sung (1993) and Sung (1997).

The efficiency of mean-unbiased estimators under the usual quadratic loss may be assessed
by the Cramer-Rao lower bound. One way to generalize the Cramer—-Rao lower bound and
provide a system of lower bounds in which the Cramer-Rao lower bound is a special case
was first given by Bhattacharyya (1946).

The Bhattacharyya lower bound of order k, k= 2, requires more stringent regularity con-
ditions than the Cramer-Rao lower bound. The conditions under which a mean-unbiased esti-
mator achieves the Bhattacharyya lower bound of the kth order was given by Fend (1959).

In this paper we define another kind of diffusivity which is a function of total variation of
density and give an information inequality for median-unbiased estimators based on the new-
ly-defined total variation-type diffusivity, which can be regarded 'as an analogue of the
Bhattacharyya system of information inequalities.

Let X=(Xi,---,X,) be a random sample from a population with distribution function F char-
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acterized by an unknown parameter §<8. Consider an estimator or a decision 8(X) for 7(f),
a parametric function of interest.

Definition 1 6(X) is called median-unbiased for t(8) if
medians8 (X)=1(8) for all <8
Definition 2 Let Y be a random variable having a continuous density function g(y;8),
where 8 is a real-valued parameter. Let 7(f) be the median of Y. Then 1/2g(7(8);6) is de-

fined to be the diffusivity of Y.

As was shown by Sung et al. (1990a), under certain regularity conditions, the following in-
formation inequality based on diffusivity holds:

1z7(8)]
X))

1
28’3(1'(9);0)

where 1) is the first absolute moment of the sample score:

I,(6)=E, __a_l_ogai(eiz_e.)_ .

Before we introduce another kind of diffusivity, we first define the total variation of a den-
sity function.

Definition 3 We suppose that a random variable Y has a continuous density function g(y;

8). Assume that g(y;#) is defined and finite-valued on the finite interval [a,b]. Let a=yo<y:
<--<yx=b be a finite partition of [a,b)]. Let

.
Tyla,b] = supz,lg(yi) —g(y;_ DI,

where the supremum is taken over all partitions of [a,b). T¥la,b] is called the total variation
(TV) of g on [ag,b]l. We put Ty[R]=supasTrla,bl.

Definition 4 For a random variable Y with a continuous density function g(y;8), we de-
fine 1/T¥[S(0)] as TV-type diffusivity of Y, where S(6) is defined by

g2(:H>0 for y € S(@),
2(y;)=0 for y € R—S(),
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and Ty[S(6)] is the total variation of Y on S(9).
Suppose that S(8) is a countable union of intervals. Then Ty[S(#)] has a simple form:

Lemma 1 For a random variable Y with a continuous and differentiable density function
g{y:0),

Tols@)=E, |2louglvif) |

where S(f) is the set of y’s such that g(y;6)>0 and is a countable union of intervals.

Proof: Let S(f) be a countable union of disjoint intervals Ji=(ai,bi), i=1,2,--. Let ai=yio
<yu<--<yi=Db; be a partition of J;.. With the supremum taken over all partitions of Ji

1 & g(yi,‘)"g(yi(,‘— 1)) ‘ _ — 0g(y:0)
TrlJd=sup Z\' Yi~ YiG-1 (Y= 3i-v) = f].- | dy ‘dy'

Hence, for U;Ji, the right-hand side term becomes

Tris®) = [, [{2ERE:0 |o(y; 0y~ |

g(y;0) Iﬂgﬁlﬁ lg(y; 6)dy. (QED.)

S(6)
We state without proof the following lemma:
Lemma 2 For a random variable Y with a continuous density function g(y;6),
Ty[R]= Ty[S(®)]+{total sum of jump sizes of g},
where S(8) is the set of y's such that g(y;6)> 0.

If the value of diffusivity is 0, then we say that diffusivity is not defined. In mean-unbiased
estimation, the variance is not defined for, e.g., the Cauchy distribution which has heavy tails.
On the contrary, diffusivity is not defined for a distribution such as X;° which approaches
at a point.

Bickel and Lehmann (1979) defined a functional A(Y') for a random variable Y to be a
measure of spread if A satisfies

(i) AY)=0
(ii) A@Y)=|ald(Y) fora =0
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(iii) A(Y+b)=A4(Y) for all b
(iv) 4(-Y)=41")

It is interesting that for continuous densities the TV-type diffusivity satisfies the Bickel and
Lehmann’s conditions so that it enjoys the defining properties of the measures of spread even
though it is a completely different measure of dispersion from usual measures of dispersion
for mean—unbiased estimation. It might also be noticed that the TV-type diffusivity is defined
without reference to the parametric function of interest, which is analogous to the variance in
mean-unbiased estimation. On the other hand, the original diffusivity given by Sung et al.
(1990a) depends on the parametric function of interest by its definition, which may be re-
garded as an analogue of the mean square error for median-unbiased estimation, since the
mean square error of an estimator, in general, depends on the parametric function of interest.
However, We remark that a good estimator in terms of the original diffusivity is not necessa-
rily a good estimator in terms of the TV-type diffusivity.

We also note that the TV-type diffusivity reduces to the original diffusivity if the me-
dian-unbiased estimator of 7(f) has a unimodal density function which is continuous over the
real line and has a mode at ().

2. Bhattacharyya-type Information Inequality

Let X=(Xy,~-,Xn) be a random vector of n iid random variables having a joint density
function f(x;§), where 8 is a real-valued parameter. Let T be a real-valued function on 4,
which is differentiable. Let Y=56(X) be median-unbiased for 7(f). We assume that Y has a
known density g(y;8) and both f and g are continuous. ‘

We also assume that g has a global maximum at ¢(f) and has at most countable number
of local extreme points, with the convention that an interior point is taken in case that g is
constant over an interval and all points belonging to that interval are local extreme points. We
denote local extreme points of g as ¥(f) and assume further that ¥%(8)=@(8)+c, where c
is a constant, {=1,2,:--. Of course, ;=0 if ¥:(§)=¢@(8) for some i. We assume that there ex-
ists a one-to-one transformation ¢ such that given ¥%(8), i=1,2,---, {(¥(6)) is a constant for
all €8 and ¢(Y) has a distribution which does not depend on the parameter 8.

Theorem 1 Let 7(f) be a real-valued function on 8, which is differentiable. Let Y=4§(X)
be a median-unbiased estimator having a continuous density gs. We assume that gs has a
global maximum at ¢(§). Then under the following regularity conditions:

(i) 8 is either the real line, or an interval on the real line.
(ii) (8 /98 f(x;0) exists ae. for every 6<8.
(i) 0<Esl(a /a8 log flx;0)| < for every 68,
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we have

1 160
TyIS(O] = 1(6) -

where gs(y;8)> 0 for y €S).

Proof: Let Ai=[x: %)< (X)<¥+1(6)]. Note that A’s are disjoint and U;A;=R. Consider
Pornl¥(6) <Y <¥(8+48)], where 46 is in the neighborhood of 0. We can write this proba-
bility as follows:

¢;41(0+48)

¢, (6+46)
fw) g(y;6+46)dy= fAl_f(x,6+Aﬁ)dx—fAif(x,H)dx+f¢m(0) g(y; 0+ 46)dy.

Taking absolute values to both sides after moving the last integral term of the right-hand
side of the above to the left-hand side, we have

$;+1(0+40)

lf¢i(9+do)g(y;0+46)dy -—f

4.6 C)) g(y;6+dﬁ)dy‘ sfAilf(x;0+AH)—f(x;0)|dx.

Let 49 be in the neighborhood of 0. Dividing both sides by 48 and letting 46—0, and us-
ing the assumption that ¥%'(6)=¢’(6), one finds

’ . . : f(x;0+ 46)— f(x;8)
16 (0)12(4:(0):0) ~ £ (411 (0):0)] = lim [ | Fi0HAA=Lx0 g,

Adding above inequality over all i's, we have

. ) . . f(x;0+40)— f(x;8)
16'(0)] Sg(4,(6):0) = 2 (121 (6):0)| < Iim || 16) | dx.
Since (0 /3 Dlogf(x;:8)| exists and integrable for all §,

16/(O)] SUg(4:(0%:0)— g (41, (0):0)] < [ |- 208LLELY £z ).

Note that >, 1g(¢;(8);8)— g (¢;+,(8);0)| is nothing but the total variation of g. Hence,
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6 (OITy IS0 < [ |[LEKEb) | 14 6)ax. (QED)

When we take a sample from a strictly monotone density, it is often possible to find me-
dian-unbiased estimators for which the original diffusivity is smaller than the lower bound.
Such a density has a discontinuity point at an endpoint of its support so that the conditions
for a regular case are usually not satisfied. But Theorem 1 still holds in such cases due to
the regularity condition (if).

Example Let X be a random variable with density function
flxsm)=cl—(x—m)*+2(x—m)?+8], |x—m|<2,

where ¢=15/448. Since f is symmetric about m, then X itself is a median-unbiased estimator

of m. In addition, f is a bimodal density. f has maxima at m+1, and has a local minimum at

m. Also, f(m—1)=f(m +1)=9¢, fim)=8c. Therefore the values of diffusivity of the original

and the TV-type are 1/16¢ and 1/20c, respectively. Since (8 /3 m)logfGe;m)=4(x—m)*—4(x
—m), then

m+

2
I,(m) =4cfm_2 |[4(x—m)® —4(x—m) |dx =20c .

Hence the lower bound is achieved only with the TV-type diffusivity.

3. On the Attainment of the Lower Bound

We now identify the family of distributions for which the lower bound is achieved. In order
to achieve the lower bound the following equality should hold:

|fAi’m‘;§(0Mf(x;0)dx| = fAilﬂg%ﬁHf(x;ﬁ)dx

for all i. In general consider the following inequality:

[ nlax = | [ hax|,

where h is a real-valued function and E CR. Obviously the equality holds if and only if > 0
ae. on F or h< 0 ae. on E. Therefore we can deduce that the equality holds if and only if
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either (0 /0 8 log f(x:8)=0 or (3 /3 ®log f(x;0)<0 on A; for all i, or, equivalently, log f(x;
#) is non-increasing or non-decreasing in § on A; for all i.

Noting that for strictly convex h, (0 /4 8)f(x;8) is strictly increasing in § and that the
regularity condition (ii) permits strictly convex A, we can slightly generalize Theorem 3 in
Sung et al. (1990a) to find an optimal median-unbiased estimator for a certain density belong-
ing to a location family.

Theorem 2 Let X=(X1,-",X,) be a sample of n iid random variables from a density of
the form f(x1;6)=cexph(x, —¥), where ¢ is a constant and h is strictly concave (convex).
Assume that the regularity conditions in Theorem 1 are satisfied. If we take a median-un-
biased estimator §(X) of § such that X ;A (X;—8(X))=0, then such an estimator & attains
the lower bound. Conversely, if a median-unbiased estimator § of # attains the lower bound,
then & satisfies 2 :A'(X;— 86(X))=0.

4. A Comparison with the Bhattacharyya Lower Bound

The Bhattacharyya system of lower bounds, given by Bhattacharyya (1946) is a method of
improving the Cramer-Rao lower bound by considering higher order derivatives of f(x:8).
That is, in the Bhattacharyya inequality, we increase the right-hand side of the Cramer-Rao
inequality. The inequality given in Theorem 1 can be considered to be an analogue of the
Bhattacharyya lower bound in median-unbiased estimation in a reverse way.

Let us consider a median-unbiased estimator § of 7(f) and assume that § has a conti-
nuous density function g. g could be a multi-modal density function. The TV-type diffusivity
considers all local extreme points and measures density height changes of g, and accordingly
it may be regarded as an analogous procedure to considering higher order derivatives in the
Bhattacharyya system of lower bounds. The crucial difference compared to the Bhattacharyya
inequality is that we decrease the left-hand side of the information inequality with the TV-
type diffusivity.
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