• Title/Summary/Keyword: Bhatnagar-Gross-Krook

Search Result 5, Processing Time 0.02 seconds

Lattice-Boltzmann Simulation of Fluid Flow around a Pair of Rectangular Cylinders

  • Taher, M.A.;Baek, Tae-Sil;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.62-70
    • /
    • 2009
  • In this paper, the fluid flow behavior past a pair of rectangular cylinders placed in a two dimensional horizontal channel has been investigated using Lattice-Boltzmann Method(LBM). The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK(Bhatnagar-Gross-Krook)model. Streamlines, velocity, vorticity and pressure contours are provided to analyze the important characteristics of the flow field for a wide range of non dimensional parameters that present in our simulation. Special attention is paid to the effect of spacing(d) between two cylinders and the blockage ratio A(=h/H), where H is the channel height and h is the rectangular cylinder height. for different Reynolds numbers. The first cylinder is called upstream cylinder and the second one as downstream cylinder. The downstream fluid flow fields have been more influenced by its blockage ratios(A) and Reynolds numbers(Re) whereas the upstream flow patterns(in front of downstream cylinder) by the gap length(d) between two cylinders. Moreover, it is observed that after a certain gap, both upstream and downstream flow patterns are almost similar size and shape. The simulation result has been compared with analytical solution and it is found to be in excellent agreement.

Fluid Flow Behaviors around Wedge-shaped Body using Lattice Boltzmann Method (LBM을 이용한 쇄기형 물체 주위의 유동특성)

  • Taher, M.A.;Jung, H.Y.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.24-30
    • /
    • 2009
  • 본 연구에서는 기존에 널리 사용되어져 온 Wavier-Stokes 방정식을 풀이하는 전통적인 CFD 해석에서 벗어나 최근에 그 응용 분야를 넓혀가고 있는 LBM의 해석코드를 개발하고, 이를 이용하여 이차원 채널속에 놓여진 쇄기형 물체 주위의 유동특성을 조사하였다. D2Q9 격자계 및 Bhatnagar-Gross-Krook (LBGK) 모델을 채택하였으며, 수치해석 결과는 기존의 실험결과의 잘 일치하였다. 쇄기형 물체에서 와의 형성 및 방출 Reynolds 수 범위는 $32{\leq}Re{\leq}620$ 이며, 원형실린더에서 알려진 Karman 와열을 형성하는 주기적인 와방출은 대칭적인 와가 형성된 후 $Re{\geq}85$부터 시작되며 Reynolds 수의 증가에 따라 와 방출 주파수는 증가되었다.

  • PDF

SIMULATION OF FREE SURFACE FLOW OVER TRAPEZOIDAL OBSTACLE WITH LATTICE BOLTZMANN METHOD (격자볼츠만법을 이용한 장애물 월반 자유수면 시뮬레이션)

  • Korkmaz, Emrah;Jung, Rho-Taek
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.79-85
    • /
    • 2014
  • An air-water free surface flow simulation by using the Lattice Boltzmann Method(LBM) has not been studied a lot compared with the done by the Navier-Stoke equation. This paper shows the LBM is as one of the application tools for the free surface movement over an obstacle. The Mezo scaled application tool has been developed with two dimensional and nine discretized velocity direction using conventional lattice Bhatnagar-Gross-Krook model. Boundary conditions of a halfway-based for solid wall and a kinematic-based for interface are adopted. A validation case with a trapezoidal shape bump to make a comparison between freesurface movements from computational results and experimental ones was described with grid size dependency.

Numerical Study Of H2O-Cu Nanofluid Using Lattice-Boltzmann Method

  • Taher, M.A.;Li, Kui-Ming;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • In the present study, a laminar natural convection flow of $H_2O$-Cu nanofluid in a two dimensional enclosure has been investigated using a thermal lattice Boltzmann approach with the Bhatnagar-Gross-Krook (BGK) model. The effect of suspended nanoparticles on the fluid flow and heat transfer process have been studied for different controlling parameters such as particle volume fraction ($\Phi$), Rayleigh number (Ra). For this investigation the Rayleigh number changes from 104 to 106 and volume fraction varied from 0 to 10% with three different particle diameters (dp), say 10 nm, 20 nm and 40 nm. It is shown that increasing the Rayleigh number (Ra) and the volume fraction of nanofluid causes an increase of the effective heat transfer rate in terms of average Nusselt number (Nu) as well as the thermal conductivity of nanofluid. On the other hand, increasing the particle diameter causes the decrease of the heat transfer rate and thermal conductivity. The result of the analysis are compared with experimental and numerical data both for pure and nanofluids and it is seen a relatively good agreement.

The Cubic-Interpolated Pseudo-Particle Lattice Boltzmann Advection-Diffusion Model (이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델)

  • Mirae, Kim;Binqi, Chen;Kyung Chun, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2022
  • We propose a Cubic-Interpolated Pseudo-Particle Lattice Boltzmann method (CIP-LBM) for the convection-diffusion equation (CDE) based on the Bhatnagar-Gross-Krook (BGK) scheme equation. The CIP-LBM relies on an accurate numerical lattice equilibrium particle distribution function on the advection term and the use of a splitting technique to solve the Lattice Boltzmann equation. Different schemes of lattice spaces such as D1Q3, D2Q5, and D2Q9 have been used for simulating a variety of problems described by the CDE. All simulations were carried out using the BGK model, although another LB scheme based on a collision term like two-relation time or multi-relaxation time can be easily applied. To show quantitative agreement, the results of the proposed model are compared with an analytical solution.