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1. M 8

In the past years, the Lattice - Boltzmann
Method (LBM) has attracted much attention as a
novel alternative to traditional computational fluid
dynamics (CFD) methods for numerically solving
the Navier-Stokes(N-S) equation. Unlike N-S
solvers, LBM does not need to solve partial
differential equations and resultant algebraic
equations. It only involves algebraic operation.
This
implementation.

simple  and
However, the

method 1is easy for
LBM  has
demonstrated a significant potential and broad
applicability with numerous computational advantages
to incorporate microscopic interactions.

Actually LBM originated from the -cellular
(CA). A cellular automaton (CA) is

used to simulate the microscopic movements and

automata

collisions in order to get the continuum
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macroscopic equations of fluid dynamics in two
The class of cellular
automata (CA) is used for the simulation of fluid
dynamics. It also is called the Lattice Gas
Automata (LGA), which is considered as a
fictitious molecular dynamics (MD) in which
space, time and particle velocities all are discrete.

and three dimensions.

Lattice gas models with an appropriate choice of
the lattice symmetry in fact represent numerical
solutions of the N-S equations and therefore able
to describe the hydrodynamic problems discussed
byl). It is commonly recognized that the LBM can
faithfully be used to simulate the incompressible
N-S equations with high accuracy and this lattice
BGK (LBGK) model. The LBGK model makes
simulation more efficient and allows flexibility of
which has been
derived from lattice gas automata and leads to

the transport co- efficient,
the real N-S equations of incompressible flow
steady mass density condition by
appropriate  choice of the local equilibrium
distribution”. However, LBM is limited to the low
Mach

under

number(near incompressible) flow
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simulation and it has been studied by Xu and
He®. An overview of LBM, a parallel and efficient
algorithm for simulating single-phase and
multiphase fluid flows and also for incorporating
additional physical have been
discussed by Chen and Doolen”. There is no
doublt that the LBM has several advantages over
other conventional CFD methods, especially
dealing with complex boundaries, incorporating of

described

complexities

microscopic interactions, are in the

excellent books™.

It is known that an enormous corpus of
literature on the subject of bluff body wakes has
developed since the pioneering work of Strouhal
and Von Karman. This flow situation is popular
not only because of its academic attractiveness
but also owing to its related technical problems
associated with energy conservation and
structural design. A laminar vortex shedding
region is known to occur for the Reynolds
number range extending approximately from
50-80 and the universal relationship between
Reynolds and Strouhal numbers around a circular
cylinder have been studied by Williamson”. The
numerical formulation of laminar vortex shedding
flow past a circular cylinder using coupled
boundary element method (BEM) and three-step
finite element method (FEM) are briefly described
by Young etal®. Actually many authors have
been studied the vortex shedding frequency
behind a circular cylinder or square cylinder or

two cylinders for different cases
9711)
y

both in
numerically and experimentall . However, in
this paper, the present authors would like to
mvestigate the fluid flow behavior around a
wedge-shaped body using the lattice Boltzmann
method (LBM). As far we know, the problem has
been considered bhefore. The objective of this
paper is to numerically study of fluid flow
behavior around wedge-shaped body where the
flow can be driven with the pressure (density)
gradients. Here we have focused our attention on
the evolution of streamlines, vorticity contours,
pressure contours as well as velocity profiles and

vortex shedding frequency, to investigate the
important characteristics of the flow field around
wed-shaped hody, for a
non-dimensional parameters, namely the Reynolds
number (Re) and the Strouhal number (St), based

on the characteristic length of the body, the

wide range of

maximum incoming flow velocity (less then 0.1lu
} and also the nature of fluid transport properties.
Throughout our calculation we use the
Lattice-Boltzmann units, Most LBM simulation A
x and At are assumed as the space and time unit
The unit () is the
fundamental measure of length and time steps

(ts) is the unit of time in LBM.

respectively. lattice

2. Formulation of the Problem

The computational domain is to consider as a
rectangular region Lx H, where H is the height
of the channel and L-4H is the length of the
channel. A wedge-shaped body having wedge
angle © = 90" is placed symmetrically between
parallel walls as shown in Fig.l.

Fig. 1 Physical model and coordinate systems

Actually the wedge angle is defined by 6 = n5,
0< B<1. It is noted that the case £ equal to zero
corresponds to flow over a flat plate while 0
equal to one corresponds to flow over a vertical
flat plate. In an incompressible flow, Reynolds
number is one of the major parameters that
controls the flow field and is define by Re=Uh/v
swhere U and h are the characteristic velocity and
the length of the bluff body respectively. If a
body is placed in a flow stream, vortices form
behind shed alternately from each side. A vortex
can be any circular or rotary flow that possesses
vorticity. Vorticity is a mathematical concept used
in fluid dynamics. Mathematically, it is defined as,
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w=V Xu , Where u s the fluid velocity. The
non dimensional shedding frequency, the Strouhal
number, is defined as: St = fA/U ,where f is the
vortex shedding frequency. Over a wide range of
the Strouhal number is
constant, implying a linear relationship between

Reynolds numbers,
shedding frequency and mean velocity. It is found
that the Strouhal number is almost constant value
of 02 in the
300<Re<2x10.

least-squares fit to the universal Strouhal number

Reynolds number range of

" has

Williamson” given a
curve for the low Reynolds number regime as St
= A/Re + B+ CRe, where A=-3.3265 B=0.1816,
and C=16x10". This relation is believed to be
accurate to £1% in the Reynolds number. In order
to simulate a fully developed laminar channel
flow, a parabolic velocity profile can be expressed

as
uly) = U1~ (1—2y/H)?] L

where U is the maximum velocity at the
channel inlet. This velocity is chosen to be lower
than 10% of the speed of sound for LBM
simulation to avoid significant compressibility
effects. At the top and bottom wall, no slip
boundary conditions namely zero fluid velocity. u
= v = 0, have been imposed by the standard
bounce back rule.

In LBM, the movement of the fluid particles are
directly  the
macroscopic fluid quantities like the velocity and

modeled instead of solving
mMesoscopic
based on the
Neglecting external
forces, the Boltzmann equation (BE) with BGK

approximation can be defined as

the pressure. It is known as
which is
Boltzmann equation (BE).

simulation model,

e 2h L b 0 gl
Y 62'-?%—— T\ £, =0, 1--g- 2)
where F (;,t) is the discrete particle

distribution function and Ff‘?(;,t) is the discrete
equilibrium distribution function at lattice position
z and time ¢ discussed byg) . The total number of

discrete particle velocities (e;) on each node in
D2Q9 model is 9. The velocities of the particles
are such that they move from one node to
another during each time step. These particle
velocities can be written as

(0,0) i=0,

c[cos(% ﬁ),sin(% )] i=1234,

ei:

ﬁc[cos(%ﬂ + 3, sin(§n 3 1=5678,

Here ¢ =Ax/At is called CFL umber. Therefore
the discrete form of equation (2) is called the
Lattice Boltzmann equation (LBE) and can be
written as

F(z+ Atert+ At) — F(zt) :v%(Fi—ﬁ;‘f‘l) 3)
Here @ =1/7 is the relaxation parameter and
depends on the local macroscopic variables, p and,

p; and should satisfy the following laws of

conservation:
p=2F,  and pu=DeF, )
The above  expressions describe  the
relationships between the microscaled quantities

and the
macroscaled physical quantities of flow such as

define on the basis of lattice sizes

the mass density and the velocity of the fluid.
The general form of the equilibrium distribution
function can be written up to O(?) [8]

Ff= pw; 1+ %2.24— %(e_;.;)z - %uz] 5)
c 2¢ c

where wi is the lattice weighting factors
depend only on the lattice model .For D2Q9
model, wo= 4/9, w; =1/9, i =1, 2, 3, 4, and w; =
1/36, i = 5, 6, 7, 8 Using the Chapman-Enskog
expansion, it is mathematically provable that the
equation (3) can recover the N-S equations, if the
pressure and the kinetic viscosity are presented
by

P=p Cs?and v= (r— %)082At (6)

where the speed of sound in this model is
defined by Cs= v RT. It should be noted that
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the temperature 7 has no physical significance
for the isothermal model (7=constant). And thus,

the grid CFL number can be defined as
Ag

c= +/3RT= Tt: 1

In this simulation, we consider, Ax= llu =
633x 10°m, At = 1 ts = 1.15%x 10%. The fluid
properties are taken to air properties. The
viscosity v =15.63% 10 5m%/s,
corresponds to 0.0045 lattice unit. All reported
data are obtained on our calculation domain
320x 80 (lattice node). For accurate solution, the
Mach number, Ma, should be kept as small as
possible. In general U in order of 0.2 or 0.1 or
less. Therefore, the Reynolds number should be
chosen very carefully.

kinematic

3. Results and Discussions

CFD methods for
incompressible N-S equations ,one needs to solve
the Poisson equation for the pressure. However in
LBM, solving the equation (3), we get all
information that we interested to simulate in our
study including pressure terms. The algebraic
equation (3) is the main governing equation and
it is solved by uniform 2D grid system along
with boundary conditions and other equations
described as above.

In conventional

One important quantity taken into account in
the present simulation is the Strouhal number(St),
computed from the height (h) of the bluff body,
the vortex shedding frequency and the velocity of
the incoming fluid. In order to assess the
accuracy of our method, we compare our results
(LBM) with other published works. As the
experimental and numerical data are available
only the flow around a circular cylinder or square
cylinder but not available in wedge-shaped body,
so we would compare our result with available
results. The dimensionless shedding frequency
with Reynolds numbers in the wake of circular

cylinder, whose diameter is D, as shown in
Fig. 2.
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Fig. 2 Comparison of dimensionless shedding
frequency with Reynolds number
The results are compared with numerical
results of Young et al? and experimental results
of Wang et al.g), Strykowski and Sreenivasan'?. It
is seen a good agreement with both experimental
Wang et al”,
have shown in

and numerical simulations.

Strykowski and Sreenivasan'”
their experimental investigation the Reynolds
range 44-80 and 44-129
respectively. However, Young et al? have found
the Reynolds number in the range 44-144 by
using coupled boundary element method (BEM)
(FEM).
study indicates the
Reynolds number in the range 36-138. However,
for different bluff
bodies e.g. wedge-shaped body, square cylinder
and circular cylinder with Reynolds number under

the conditions that described in section 2 as

number in the

and three-step finite element method

Moreover, the present

the vortex shedding frequency

shown in Fig.3.
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Fig. 3 Variation of dimensionless shedding
frequency with Reynolds number

Fig. 3 indicates that the dimensionless vortex
shedding frequency increases with the Reynolds
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number. For wedge-shaped body it is found the
reynolds number in the range up to 32-620.
However, for circular cylinder it is seen up to
82-600 and for square cylinder it is seen up to
150-635. The higher frequency means that the
process of vortex shedding is faster. The nature
of the vortex shedding is a strong function of the
Re. In our simulation, a Von Karman vortex
street is predicted behind the wedge-spaed body
with periodicity if Re>85. This kind of flow
is observed with different Re for
different bodies. Under the same conditions is
found at Re >120 for circular cylinder and Re>

behavior

225 for rectangular cylinder.

A detailed view of flow field behind the
wedge-shaped body and changes in the vortex
shedding pattern with different Reynolds numbers
can easily observed from Fig.4.

@ “ T Re=50

-, Re=100

Re=200 .

Fig. 4 Vorticity in x-y plane for different Re

In these
(clockwise vortex) is shown by dashed lines and

figures the negative vorticity
the positive vorticity (anticlockwise vortex) by
solid lines. It is seen from 4(a) that for low
Reynolds number, a pair of vortices with same
strength and size are formed just behind the
body; a positive vortex appears on the lower part
of the body and a negative vortex on the upper
part of the body. Fig 4(b) and 4(c), an important
changed in the flow is observed for high
Reynolds number (=100, 200). The flow behind the
body is characterized by Karman vortex street,
which

is consists of vortices in a regular

arrangement. These alternating vortices with the
same strength and size are shed from the upper
and lower leading edges. The distance between
consecutive vortices remains almost constant.
Therefore, it is clear that the Karman vortex
stared at Re=>8 for the
wedge-shaped body in a channel.

To analyze the time development of vorticity
for Re = 100 is shown in Fig.5.

fluid flow past a

(a) , t=5000t5

(b) t=25000 ts

(¢) 300001

(d) , 40000 ts

(e) t=50000 ts- -

¢3) +=70000s

Fig. 5 Streamlines plot in x-y plane for different

times
From the first plot, it is seen that the
alternating vortices with same size and strength
are shedded from the upper and lower corner of
the body.
different time steps with respect to the oncoming

the flow pattern is symmetric for

flow and there is a closed recirculation zone just
behind the body. This zone is made up of two
symmetrical vortices that rotate in opposite
directions. The next plots (5(b)-(e)) have shown
that the low pressure core of the fully developed
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vortex has pulled away from the body and
consequently another new one is forming and it
is observed that the vortices are shed alternately
with time steps. Finally the last plot, at time
steps  t=70,000, identical with the
Fig.5(d). This evolutionary process is repeated
approximately every 30,000 time steps. The same
phenomenon has been seen that for flow over an
airfoil at -90 degree angle of attack documented
by Rogers and Kwak”. In addition, if we
increase the Reynolds number, the time period
becomes shorter. It is

is nearly

investigated that, for
Re=200, the time period is approximately about
15,000 time steps.

@ Re=50

® Re=100

Fig. 6 Pressure field for flow across wedge -
shaped bodies with different Re

Apart from the velocity profile, pressure
distribution is important to understand the flow
field behavior around the bluff bodies. Fig.6
shows the pressure contours with Re=50, 100 and
200. For lower Reynolds number, the variation of
pressure contours are not significant at the far
from the body. However for higher Reynolds
number, it was more significant and the pressure
contours becomes more complex and unstable.
This is expected because by increasing the
Reynolds number, the vortices become stronger.
Stronger vortices cause low pressure in the wake
and there exist maximum low pressure at the
center of each vortex.

4. Conclusion

The present investigations provided us some
important information regarding flow in the wake
behind the wedge-shaped body with wegde angle
0=90". Tt has been seen that the vortex shedding
frequency increases with the Reynolds number in
the range up to 32 < Re < 620 . For lower
Reynolds number(=50) the flow patterns were
almost symmetric whereas for higher Reynolds
number(=100, 200), the flow behind the body is
characterized by a Karman vortex street, which
consists of vortices in a regular arrangement.
This phenomenon is seen after Re =>8b. The
distance between consecutive vortices remains
almost constant. This distance as well as the
time period becomes shorter with the increasing
of Reynolds number. The time period for Re=100
is investigated approximately 30,000 time steps,
for Re=200, it observed about 15000
time steps. Consequently the similar behaviors

whereas

have been observed in pressure contours.
Actually, the present study with LBM provides us
a reliable and accurate results for 2D  channel
flow around a Dbluff body. Therefore, it gives us
confidence to expand the application of LBM for

the simulation at more complex fluid flow

problems.
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