• 제목/요약/키워드: Beta operators

검색결과 73건 처리시간 0.017초

ON n-TUPLES OF TENSOR PRODUCTS OF p-HYPONORMAL OPERATORS

  • Duggal, B.P.;Jeon, In-Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권4호
    • /
    • pp.287-292
    • /
    • 2004
  • The operator $A \; {\in} \; L(H_{i})$, the Banach algebra of bounded linear operators on the complex infinite dimensional Hilbert space $\cal H_{i}$, is said to be p-hyponormal if $(A^\ast A)^P \geq (AA^\ast)^p$ for $p\; \in \; (0,1]$. Let (equation omitted) denote the completion of (equation omitted) with respect to some crossnorm. Let $I_{i}$ be the identity operator on $H_{i}$. Letting (equation omitted), where each $A_{i}$ is p-hyponormal, it is proved that the commuting n-tuple T = ($T_1$,..., $T_{n}$) satisfies Bishop's condition ($\beta$) and that if T is Weyl then there exists a non-singular commuting n-tuple S such that T = S + F for some n-tuple F of compact operators.

  • PDF

CESÀRO OPERATORS IN THE BERGMAN SPACES WITH EXPONENTIAL WEIGHT ON THE UNIT BALL

  • Cho, Hong Rae;Park, Inyoung
    • 대한수학회보
    • /
    • 제54권2호
    • /
    • pp.705-714
    • /
    • 2017
  • Let $A^2_{{\alpha},{\beta}}(\mathbb{B}_n)$ denote the space of holomorphic functions that are $L^2$ with respect to a weight of form ${\omega}_{{\alpha},{\beta}}(z)=(1-{\mid}z{\mid}^{\alpha}e^{-{\frac{\beta}{1-{\mid}z{\mid}}}}$, where ${\alpha}{\in}\mathbb{R}$ and ${\beta}$ > 0 on the unit ball $\mathbb{B}_n$. We obtain some results for the boundedness and compactness of $Ces{\grave{a}}ro$ operator on $A^2_{{\alpha},{\beta}(\mathbb{B}_n)$.

NORMAL, COHYPONORMAL AND NORMALOID WEIGHTED COMPOSITION OPERATORS ON THE HARDY AND WEIGHTED BERGMAN SPACES

  • Fatehi, Mahsa;Shaabani, Mahmood Haji
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.599-612
    • /
    • 2017
  • If ${\psi}$ is analytic on the open unit disk $\mathbb{D}$ and ${\varphi}$ is an analytic self-map of $\mathbb{D}$, the weighted composition operator $C_{{\psi},{\varphi}}$ is defined by $C_{{\psi},{\varphi}}f(z)={\psi}(z)f({\varphi}(z))$, when f is analytic on $\mathbb{D}$. In this paper, we study normal, cohyponormal, hyponormal and normaloid weighted composition operators on the Hardy and weighted Bergman spaces. First, for some weighted Hardy spaces $H^2({\beta})$, we prove that if $C_{{\psi},{\varphi}}$ is cohyponormal on $H^2({\beta})$, then ${\psi}$ never vanishes on $\mathbb{D}$ and ${\varphi}$ is univalent, when ${\psi}{\not\equiv}0$ and ${\varphi}$ is not a constant function. Moreover, for ${\psi}=K_a$, where |a| < 1, we investigate normal, cohyponormal and hyponormal weighted composition operators $C_{{\psi},{\varphi}}$. After that, for ${\varphi}$ which is a hyperbolic or parabolic automorphism, we characterize all normal weighted composition operators $C_{{\psi},{\varphi}}$, when ${\psi}{\not\equiv}0$ and ${\psi}$ is analytic on $\bar{\mathbb{D}}$. Finally, we find all normal weighted composition operators which are bounded below.

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • 충청수학회지
    • /
    • 제24권1호
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.

CONSTANT-SIGN SOLUTIONS OF p-LAPLACIAN TYPE OPERATORS ON TIME SCALES VIA VARIATIONAL METHODS

  • Zhang, Li;Ge, Weigao
    • 대한수학회보
    • /
    • 제49권6호
    • /
    • pp.1131-1145
    • /
    • 2012
  • The purpose of this paper is to use an appropriate variational framework to discuss the boundary value problem with p-Laplacian type operators $$\{({\alpha}(t,x^{\Delta}(t)))^{\Delta}-a(t){\phi}_p(x^{\sigma}(t))+f({\sigma}(t),x^{\sigma}(t))=0,\;{\Delta}-a.e.\;t{\in}I\\x^{\sigma}(0)=0,\\{\beta}_1x^{\sigma}(1)+{\beta}_2x^{\Delta}({\sigma}(1))=0,$$ where ${\beta}_1$, ${\beta}_2$ > 0, $I=[0,1]^{k^2}$, ${\alpha}({\cdot},x({\cdot}))$ is an operator of $p$-Laplacian type, $\mathbb{T}$ is a time scale. Some sufficient conditions for the existence of constant-sign solutions are obtained.

HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L2

  • Nakazi, Takahiko
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.787-798
    • /
    • 2018
  • For $1{\leq}p{\leq}{\infty}$, let $H^p$ be the usual Hardy space on the unit circle. When ${\alpha}$ and ${\beta}$ are bounded functions, a singular integral operator $S_{{\alpha},{\beta}}$ is defined as the following: $S_{{\alpha},{\beta}}(f+{\bar{g}})={\alpha}f+{\beta}{\bar{g}}(f{\in}H^p,\;g{\in}zH^p)$. When p = 2, we study the hyponormality of $S_{{\alpha},{\beta}}$ when ${\alpha}$ and ${\beta}$ are some special functions.

OPERATORS A, B FOR WHICH THE ALUTHGE TRANSFORM ${\tilde{AB}}$ IS A GENERALISED n-PROJECTION

  • Bhagwati P. Duggal;In Hyoun Kim
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1555-1566
    • /
    • 2023
  • A Hilbert space operator A ∈ B(H) is a generalised n-projection, denoted A ∈ (G-n-P), if A*n = A. (G-n-P)-operators A are normal operators with finitely countable spectra σ(A), subsets of the set $\{0\}\,{\cup}\,\{\sqrt[n+1]{1}\}.$ The Aluthge transform à of A ∈ B(H) may be (G - n - P) without A being (G - n - P). For doubly commuting operators A, B ∈ B(H) such that σ(AB) = σ(A)σ(B) and ${\parallel}A{\parallel}\,{\parallel}B{\parallel}\;{\leq}\;{\parallel}{\tilde{AB}}{\parallel},$ ${\tilde{AB}}\;{\in}\;(G\,-\,n\,-\,P)$ if and only if $A\;=\;{\parallel}{\tilde{A}}{\parallel}\,(A_{00}\,{\oplus}\,(A_0\,{\oplus}\,A_u))$ and $B\;=\;{\parallel}{\tilde{B}}{\parallel}\,(B_0\,{\oplus}\,B_u),$ where A00 and B0, and A0 ⊕ Au and Bu, doubly commute, A00B0 and A0 are 2 nilpotent, Au and Bu are unitaries, A*nu = Au and B*nu = Bu. Furthermore, a necessary and sufficient condition for the operators αA, βB, αà and ${\beta}{\tilde{B}},\;{\alpha}\,=\,\frac{1}{{\parallel}{\tilde{A}}{\parallel}}$ and ${\beta}\,=\,\frac{1}{{\parallel}{\tilde{B}}{\parallel}},$ to be (G - n - P) is that A and B are spectrally normaloid at 0.

Integral operators that preserve the subordination

  • Bulboaca, Teodor
    • 대한수학회보
    • /
    • 제34권4호
    • /
    • pp.627-636
    • /
    • 1997
  • Let $H(U)$ be the space of all analytic functions in the unit disk $U$ and let $K \subset H(U)$. For the operator $A_{\beta,\gamma} : K \longrightarrow H(U)$ defined by $$ A_{\beta,\gamma}(f)(z) = [\frac{z^\gamma}{\beta + \gamma} \int_{0}^{z} f^\beta (t)t^{\gamma-1} dt]^{1/\beta} $$ and $\beta,\gamma \in C$, we determined conditions on g(z), $\beta and \gamma$ such that $$ z[\frac{z}{f(z)]^\beta \prec z[\frac{z}{g(z)]^\beta implies z[\frac{z}{A_{\beta,\gamma}(f)(z)]^\beta \prec z[\frac{z}{A_{\beta,\gamma}(g)(z)]^\beta $$ and we presented some particular cases of our main result.

  • PDF