
Bull. Korean Math. Soc. 54 (2017), No. 2, pp. 705–714
https://doi.org/10.4134/BKMS.b160288
pISSN: 1015-8634 / eISSN: 2234-3016

CESÀRO OPERATORS IN THE BERGMAN SPACES WITH

EXPONENTIAL WEIGHT ON THE UNIT BALL

Hong Rae Cho and Inyoung Park

Abstract. Let A2
α,β

(Bn) denote the space of holomorphic functions that

are L2 with respect to a weight of form ω
α,β

(z) = (1−|z|)αe
−

β
1−|z| , where

α ∈ R and β > 0 on the unit ball Bn. We obtain some results for the
boundedness and compactness of Cesàro operator on A

2
α,β

(Bn).

1. Introduction

Let Bn be the unit ball of the complex n-space Cn and Sn be the unit sphere
in Cn. Let dV denote the ordinary volume measure. If z = (z1, . . . , zn) and
w = (w1, . . . , wn) are points on Bn, we write

〈z, w〉 =
n
∑

j=1

zjwj , |z| = 〈z, z〉1/2.

We let A2
α,β(Bn) denote the space of holomorphic functions that are L2 on Bn

with respect to a rapidly decreasing weight of form

ωα,β(z) = (1 − |z|)αe−
β

1−|z| , α ∈ R, β > 0.

In this case, we give the norm of the space A2
α,β(Bn) as

‖f‖2,α,β =

[
∫

Bn

|f(z)|2(1− |z|)αe−
β

1−|z| dV (z)

]1/2

.
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Let H(Bn) be the space of all holomorphic functions in Bn. Given a function
g ∈ H(Bn) we define the radial derivative Rg of g by

Rg(z) =
n
∑

j=1

zj
∂g

∂zj
(z).

For m = 1, 2, . . . , we set Rmf = R(Rm−1f). The extended Cesàro operator Tg
is defined by

Tg(f)(z) =

∫ 1

0

f(tz)Rg(tz)
dt

t
, z ∈ Bn,

where f, g ∈ H(Bn).
We obtain some results for the boundedness and compactness of Cesàro

operator on A2
α,β(Bn).

Theorem 1.1. Let g ∈ H(Bn) and α ∈ R, β > 0. Then

(1) Tg is bounded on A2
α,β(Bn) if and only if

sup
z∈Bn

(1− |z|)2|Rg(z)| <∞.

Moreover,

‖Tg‖ ≈ sup
z∈Bn

(1− |z|)2|Rg(z)|.

(2) Tg is compact on A2
α,β(Bn) if and only if

lim
|z|→1−

(1 − |z|)2|Rg(z)| = 0.

While many works ([1], [2], [3], [4], [5], [6], [7], [8], [9]) on the one-variable
theory of Bergman spaces with rapidly decreasing weights have been estab-
lished, the several-variable theory has not been yet. Our work may be thought
of as a prototype for Bergman spaces with exponential weight in the several-
variable theory.

On the unit disk D, the boundedness and compactness of Tg have been chara-
terized for a large class of weights which satisfy certain conditions in terms of
the symbol function g ([1], [4], [7]). Recently, in [7], Pau and Peláez completed
the characterizations of Tg on Bergman spaces with rapidly decreasing weights.

In Section 2, we extend the equivalence of norms to the unit ball. In Section
3, we estimate the Bergman kernel for A2

α,β(Bn) on the diagonal and norms of
our test functions. As an application, we prove some results for the character-
ization of the boundedness and compactness of Tg in Section 4.

Constants. In the rest of the paper we use the same letter C to denote various
positive constants which may change at each occurrence. Variables indicating
the dependency of constants C will be often specified. We use the notation
X . Y or Y & X for nonnegative quantities X and Y to mean X ≤ CY for
some inessential constant C > 0. Similarly, we use the notation X ≈ Y if both
X . Y and Y . X hold.
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2. Bergman spaces with rapidly decreasing weights

Given a positive differentiable weight function ω(z) = ω(|z|) which is in-
tegrable in Bn, the weighted Bergman space A2

ω(Bn) consists of holomorphic
functions f in Bn such that

‖f‖22,ω =

∫

Bn

|f(z)|2ω(z) dV (z) <∞.

We note that A2
ω(Bn) is the standard Bergman spaces when ω(r) = (1 − r)α,

α > −1.
In the unit disk, we have the norm equivalence completed by Pavlović and

Peláz [6]. Prior to stating the result, we introduce the distortion function ψω

of the weight function ω. As following Siskakis [9] we define the distortion
function as follows:

ψω(r) =
1

ω(r)

∫ 1

r

ω(t) dt, 0 ≤ r < 1.

Lemma 2.1 ([9]). If there is a constant A <∞ such that

ω′(r)

ω(r)2

∫ 1

r

ω(t) dt ≤ A, 0 < r < 1,(2.1)

then for all f ∈ H(D),
∫

D

|f(z)|2ω(z) dA(z) ≈ |f(0)|2 +
∫

D

|f ′(z)|2ψω(z)
2ω(z) dA(z),

where dA(z) denotes the normalized Lebesque area measure in D.

Proof. You can refer to Lemma 2.1 and Lemma 2.2 in [9]. �

Here, we notice that all positive differentiable decreasing functions satisfy
(2.1). Owing to the integration of slice, we can extend Lemma 2.1 to the unit
ball.

Theorem 2.2. Suppose ω(r) satisfies condition (2.1). Then
∫

Bn

|f(z)|2ω(z) dV (z) ≈ |f(0)|2 +
∫

Bn

|Rf(z)|2ψω(z)
2ω(z) dV (z)

for all f ∈ H(Bn).

Proof. Since the measure dS is a rotation invariant measure and

‖f‖22,ω ≈
∫ 1

0

∫

Sn

|f(rζ)|2dS(ζ)ω(r)rk dr

for some k ≥ 0 we have ([10], Lemma 1.10)
∫

Bn

|f(z)|2ω(z) dV (z) ≈
∫

Sn

∫ 1

0

∫ 2π

0

|f(reiθζ)|2 dθ
2π

ω(r)r dr dS(ζ).
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Now, we consider the slice function fζ(re
iθ) := f(reiθζ). Applying fζ(z) to

Lemma 2.1, Tonelli’s Theorem follows that
∫

Bn

|f(z)|2ω(z) dV (z)

≈ |fζ(0)|2 +
∫

Sn

∫ 1

0

∫ 2π

0

|f ′
ζ(re

iθ)|2 dθ
2π

rψω(r)
2ω(r) dr dS(ζ).

Since zf ′
ζ(z) = Rf(zζ), we obtain

‖f‖22,ω ≈ |f(0)|2 +
∫

Sn

∫ 1

0

∫ 2π

0

|Rf(reiθζ)|2 dθ
2π

ψω(r)
2ω(r) dr dS(ζ)

≈ |f(0)|2 +
∫

Sn

∫ 1

0

|Rf(rζ)|2ψω(r)
2ω(r)r2n−1 dr dS(ζ).

Thus we complete our proof. �

In [9], Siskakis shows that distortion function of ωα,β is

ψωα,β
(r) ≈ (1− r)2.

Therefore we can notice that the weight function

ω̃α,β(r) = ψ2
ωα,β

(r)ωα,β(r) ≈ ωα+4,β(r)

and it also satisfies condition (2.1) since ω̃α,β(r) is still a decreasing function.
Thus if we repeat the same work to function Rf in Theorem 2.2, then we obtain
the following result.

Corollary 2.3. Let k ≥ 1. Then

‖f‖22,α,β ≈
k−1
∑

m=0

∑

|γ|=m

|∂γf(0)|2 + ‖Rkf‖22,α+4k,β.

Here, we are using the standard multi-index notation. Namely, given an
n-tuple γ = (γ1, . . . , γn) of nonnegative integers,

|γ| =
n
∑

j=1

γj , γ! = γ1! · · · γn!, zγ = z
γ1

1 · · · zγn
n , ∂γ = ∂

γ1

1 · · · ∂γn
n ,

where ∂j denotes the partial differentiation with respect to the j-th component.

3. Reproducing kernel estimates and test functions

3.1. Reproducing kernel estimates

Since each point evaluation is bounded on A2
α,β(Bn), there exists the re-

producing kernel Kα,β(z, w) for A2
α,β(Bn). We know that Kα,β(z, w) is given

by

Kα,β(z, w) =
∑

γ

zγwγ

‖zγ‖22,α,β
.
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Unfortunately, the explicit form of Kα,β(z, w) is unknown, but we are going
to calculate the reproducing kernel on the diagonal using the following useful
calculations.

Proposition 3.1 ([4]). Let α ∈ R and β, s > 0. Then
∫ 1

0

(1− r)α e−
β

1−r rs dr ≈ s−
2α+3

4 e−2
√
βs, s→ ∞.

Let us consider the function

z 7→ (1− z)αe
β

1−z , α, β ∈ R and z ∈ D.

We can notice that the function is analytic in the unit disk. Therefore we have
its Taylor expansion with coefficients Lm(α, β) such that

(1− z)αe
β

1−z =

∞
∑

m=0

Lm(α,−β)zm.(3.1)

Lemma 3.2 ([4]). Let α ∈ R, β > 0. Then

Lm(α,−β) ≈ m− 2α+3

4 e2
√
βm.

The area of the unit sphere Sn in Cn is given by

σ2n−1 =
2πn

(n− 1)!
.

Now, we calculate the size of the Bergman kernel for A2
α,β(Bn) on the diagonal.

Theorem 3.3. Let α ∈ R and β > 0. Then

Kα,β(z, z) ≈ (1− |z|2)−2n−α−1e
2β

1−|z|2 , z ∈ Bn.

Proof. We first estimate the size of the monomial in A2
α,β(Bn). Proposition 3.1

gives

‖zγ‖22,α,β =

∫

Sn

|ζγ |2 dS(ζ)
∫ 1

0

(1 − r)α r2|γ|+2n−1 e−
β

1−r dr

= σ2n−1
(n− 1)! γ!

(n− 1 + |γ|)!

∫ 1

0

(1 − r)α r2|γ|+2n−1 e−
β

1−r dr

≈ γ!

(n− 1 + |γ|)! (2|γ|+ 2n− 1)−
2α+3

4 e−2
√
β
√

2|γ|+2n−1

for |γ| sufficiently large. By Stirling’s formula, we have

(n− 1 + |γ|)! ≈ |γ|n+|γ|− 1
2 e−|γ|

for |γ| sufficiently large. Thus we have

Kα,β(z, z) =
∑

γ

|zγ |2
‖zγ‖22,α,β

≈
∑

γ

|γ|n+|γ|−1
2 e−|γ|

γ!
|γ| 2α+3

4 e2
√

2β|γ||zγ |2
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=
∞
∑

m=0

∑

|γ|=m

mn+m+ 2α+1

4 e−m

γ!
e2

√
2βm|zγ |2

=

∞
∑

m=0

mn+m+ 2α+1

4 e−m

m!
e2

√
2βm

∑

|γ|=m

m!

γ!
|zγ |2.

Note that

∑

|γ|=m

m!

γ!
|zγ |2 = |z|2m

and by Stirling’s formula, we have m!em ≈ mm+ 1
2 . Thus by Lemma 3.2 and

(3.1) we have

Kα,β(z, z) ≈
∞
∑

m=0

mn+ 2α−1

4 e2
√
2βm|z|2m

≈
∞
∑

m=0

Lm(−2n− α− 1,−2β)|z|2m

= (1− |z|2)−(2n+1)−αe
2β

1−|z|2 .
�

3.2. Test functions

In [4], Dostanić proved the boundedness and compactness of Cesàro opera-
tors on the unit disc by using the test function. In our paper, the test function
also plays an important role for studying Cesàro operators on the unit ball.
Now, we calculate the size of our test function.

Lemma 3.4. Let α ∈ R and β > 0. Then for fixed a ∈ Bn,
∫

Bn

∣

∣e
2β

1−〈z,a〉

∣

∣

2
(1− |z|)αe−

β

1−|z| dV (z) ≈ (1− |a|2)2n+α+1 e
2β

1−|a|
2 .

Proof. Let z = rζ and a = Rξ. Then by the polar coordinate, we have
∫

Bn

∣

∣e
2β

1−〈z,a〉

∣

∣

2
(1− |z|)αe−

β

1−|z| dV (z)

=

∫ 1

0

∫

Sn

∣

∣e
2β

1−rR〈ζ,ξ〉

∣

∣

2
dS(ζ) (1 − r)αe−

β
1−r r2n−1 dr.

When a function f depends only one complex variable, we have the following
formula [10],

1

σ2n−1

∫

Sn

f(〈ζ, ξ〉) dS(ζ) = n− 1

π

∫ 2π

0

∫ 1

0

(1− ρ2)n−2f(ρeiθ)ρ dρ dθ(3.2)
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for any ξ ∈ Bn. Thus, if we apply the formula (3.2) to our test function, then
we obtain the one variable integration,

1

σ2n−1

∫

Sn

∣

∣e
2β

1−rR〈ζ,ξ〉

∣

∣

2
dS(ζ) =

n− 1

π

∫ 2π

0

∫ 1

0

∣

∣e
2β

1−rRρeiθ
∣

∣

2
(1− ρ2)n−2ρ dρ dθ.

On the other hand, (3.1) gives that

e
2β

1−rRρeiθ =
∑

m≥0

Lm(0,−2β) rmRmρmeimθ,

and by the Parseval equality, we get
∫ 2π

0

∣

∣e
2β

1−rRρeiθ
∣

∣

2
dθ = 2π

∑

m≥0

|Lm(0,−2β)|2 r2mR2mρ2m.

Now, by the following approximation
∫ 1

0

(1− ρ2)n−2 ρ2m+1 dρ ≈
∫ 1

0

(1− t)n−2tm dt

=
Γ(n− 1)Γ(m+ 1)

Γ(n+m)
≈ m−n+1,

together with Lemma 3.2 we obtain
∫

Sn

∣

∣e
2β

1−rR〈ζ,ξ〉

∣

∣

2
dS(ζ) ≈

∑

m≥0

|Lm(0,−2β)|2 r2mR2mm−n+1

≈
∑

m≥0

r2mR2mm−n− 1
2 e4

√
2βm.

Finally, from Lemma 3.1, we have
∫ 1

0

∫

Sn

∣

∣e
2β

1−rR〈ζ,ξ〉

∣

∣

2
dS(ζ) (1 − r)αe−

β
1−r r2n−1 dr

≈
∑

m≥0

R2mm−n− 1
2 e4

√
2βm

∫ 1

0

(1 − r)αe−
β

1−r r2n+2m−1 dr

≈
∑

m≥0

m−n−α
2
− 5

4 e2
√
2βmR2m.

Hence by applying (3.1) again, we obtain the desired estimate,
∫

Bn

∣

∣e
2β

1−〈z,a〉

∣

∣

2
(1− |z|)αe−

β

1−|z| dV (z) ≈
∑

m≥0

m−n−α
2
− 5

4 e2
√
2βm |a|2m

≈
∑

m≥0

Lm(2n+ α+ 1,−2β) |a|2m

≈ (1 − |a|2)2n+α+1 e
2β

1−|a|
2 . �
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4. Cesàro operators on A
2
α,β(Bn)

In this section, we characterize the boundedness and compactness of Cesàro
operators on A2

α,β(Bn) by using test functions.

Theorem 4.1. Let g ∈ H(Bn) and α ∈ R, β > 0. Then Tg is bounded on

A2
α,β(Bn) if and only if

sup
z∈Bn

(1− |z|)2|Rg(z)| <∞.(4.1)

Moreover,

‖Tg‖ ≈ sup
z∈Bn

(1− |z|)2|Rg(z)|.

Proof. Suppose g satisfies the condition (4.1). We note that R(Tgf) = fRg

and (Tgf)(0) = 0. Then by the case k = 1 in Corollary 2.3, we have

‖Tg(f)‖22,α,β ≈
∫

Bn

|R(Tgf)(z)|2(1 − |z|)α+4e
− β

1−|z| dV (z)

=

∫

Bn

|f(z)Rg(z)|2(1− |z|)α+4e
− β

1−|z| dV (z)

≤ sup
z∈Bn

[

(1 − |z|)2|Rg(z)|
]2‖f‖22,α,β.(4.2)

Thus Tg is bounded on A2
α,β(Bn). Conversely, suppose Tg is bounded on

A2
α,β(Bn). Since f(z)Rg(z) ∈ A2

α+4,β(Bn) for f ∈ A2
α,β(Bn), we have the

following reproducing formula

f(a)Rg(a) =

∫

Bn

f(z)Rg(z)Kα+4,β(a, z)(1− |z|)α+4e
− β

1−|z| dV (z),(4.3)

where Kα+4,β(a, z) is the reproducing kernel for A2
α+4,β(Bn). If f ∈ A2

α,β(Bn)

with f(a) 6= 0 then Corollary 2.3, (4.3) and Hölder’s inequality follow that

(1− |a|)2|Rg(a)|

≤ (1 − |a|)2
|f(a)|

∫

Bn

|f(z)Rg(z)Kα+4,β(a, z)|(1− |z|)α+4e
− β

1−|z| dV (z)

≤ (1 − |a|)2
|f(a)|

(
∫

Bn

|f(z)Rg(z)|2(1− |z|)α+4e
− β

1−|z| dV (z)

)1/2

×
(
∫

Bn

|Kα+4,β(a, z)|2(1− |z|)α+4e
− β

1−|z| dV (z)

)1/2

≤ C
(1− |a|)2
|f(a)| ‖Tgf‖2,α,β‖Kα+4,β(a, ·)‖2,α+4,β .

Now, we consider the function,

fa(z) =
[

(1 − |a|)−(2n+1)e
− 2

1−|a|
2 e

4β

1−〈z,a〉

]1/2

.(4.4)
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Since Tg is bounded, by Theorem 3.3 and Lemma 3.4 there is a constant C′ > 0
such that

(1 − |a|)2|Rg(a)| ≤ C′ (1− |a|)2
|fa(a)|

‖Tg‖‖fa‖2,α,β
√

Kα+4,β(a, a)(4.5)

.
‖fa‖2,α,β
|fa(a)|

(1− |a|)− 2n+α+1

2 e
β

1−|a|
2 ‖Tg‖

. ‖Tg‖.
Furthermore, we obtain the operator norm of Tg on A2

α,β(Bn) with (4.2),

‖Tg‖ ≈ sup
z∈Bn

(1− |z|)2|Rg(z)|.
�

Proposition 4.2. Tg is compact on A2
α,β(Bn) if and only if whenever {fm} is

a bounded sequence in A
p
α,β(Bn) such that fm → 0 on compact subsets of Bn,

then Tgfm → 0 in A2
α,β(Bn).

Proof. For this proof, you can refer to Proposition 3.11 in [3]. �

Theorem 4.3. Let g ∈ H(Bn) and α ∈ R, β > 0. Then Tg is compact on

A2
α,β(Bn) if and only if

lim
|z|→1−

(1 − |z|)2|Rg(z)| = 0.(4.6)

Proof. Let {fm} be a sequence in A2
α,β(Bn) such that ‖fm‖2,α,β < M and

fm(z) converges to 0 uniformly on compact subsets of Bn. Now, we assume
that for sufficiently small ǫ > 0, there is δ > 0 such that

(1− |z|2)2|Rg(z)| < ǫ for δ < |z| < 1.

Then we have
∫

Bn

|Tgfm(z)|2(1− |z|)αe−
β

1−|z| V (z)

≤ C

∫

Bn

|fm(z)Rg(z)|2(1− |z|)α+4e
− β

1−|z| dV (z)

.

∫

δBn

+

∫

Bn\δBn

|fm(z)Rg(z)|2(1− |z|)α+4e
− β

1−|z| dV (z)

. ǫ2‖fm‖22,α,β.
Thus the condition (4.6) implies that Tg is compact on A2

α,β(Bn).

We can see that (4.6) can be a necessary condition for the compactness of Tg
on A2

α,β(Bn). First, let us show that fa uniformly converges to 0 as |a| → 1−

on compact subsets of Bn. Put

Fa(z) =
fa(z)

‖fa‖2,α,β
.(4.7)
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Let K be a compact subset of Bn. Then for z ∈ K we have

|Fa(z)| . (1− |a|)− 2n+α+1

2 e
− β

1−|a|
2 e

2β
1−max{|z|:z∈K} → 0, |a| → 1−.

By Proposition 4.2, if Tg is compact on A2
α,β(Bn), then ‖TgFa‖2,α,β → 0 as

|a| → 1−. Now, from (4.5) in the proof of Theorem 4.1 we have

(1− |a|)2|Rg(a)| . (1− |a|)2
|Fa(a)|

‖TgFa‖2,α,β‖Kα+4,β(a, ·)‖2,α+4,β

. ‖TgFa‖2,α,β → 0 as |a| → 1−.

Thus (4.6) is a necessary condition for the compactness of Tg on A2
α,β(Bn). �
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