Bull. Korean Math. Soc. **60** (2023), No. 6, pp. 1555–1566 https://doi.org/10.4134/BKMS.b220747 pISSN: 1015-8634 / eISSN: 2234-3016

OPERATORS A, B FOR WHICH THE ALUTHGE TRANSFORM \widetilde{AB} IS A GENERALISED *n*-PROJECTION

Bhagwati P. Duggal and In Hyoun Kim

ABSTRACT. A Hilbert space operator $A \in \mathcal{B}(H)$ is a generalised n-projection, denoted $A \in (G-n-P)$, if $A^{*n} = A$. (G-n-P)-operators A are normal operators with finitely countable spectra $\sigma(A)$, subsets of the set $\{0\} \cup \{ {}^{n+\sqrt{1}} \}$. The Aluthge transform \tilde{A} of $A \in \mathcal{B}(H)$ may be (G-n-P) without A being (G-n-P). For doubly commuting operators $A, B \in \mathcal{B}(H)$ such that $\sigma(AB) = \sigma(A)\sigma(B)$ and $\|A\| \|B\| \leq \|\widetilde{AB}\|$, $\widetilde{AB} \in (G-n-P)$ if and only if $A = \|\tilde{A}\| (A_{00} \oplus (A_0 \oplus A_u))$ and $B = \|\tilde{B}\| (B_0 \oplus B_u)$, where A_{00} and B_0 , and $A_0 \oplus A_u$ and B_u , doubly commute, $A_{00}B_0$ and A_0 are 2 nilpotent, A_u and B_u are unitaries, $A_u^{*n} = A_u$ and $B_u^{*n} = B_u$. Furthermore, a necessary and sufficient condition for the operators $\alpha A, \beta B, \alpha \tilde{A}$ and $\beta \tilde{B}, \alpha = \frac{1}{\|\tilde{A}\|}$ and $\beta = \frac{1}{\|\tilde{B}\|}$, to be (G-n-P) is that A and B are spectrally normaloid at 0.

1. Introduction

Let $\mathcal{B}(H)$ denote the algebra of operators, i.e., bounded linear transformations, on an infinite dimensional complex Hilbert space \mathcal{H} into itself. An operator $A \in \mathcal{B}(H)$, with adjoint A^* , is a generalised *n*-projection, denoted $A \in (G - n - P)$, if $A^{*n} = A$. Ever since the introduction of the concept of a generalised 2-projection on a finite dimensional Hilbert space by Gross and Trenkler [7], generalised *n*-projections have been studied by a number of authors, amongst them Baksalary and Liu [1], Du and Li [5], Lebtahi and Thome [9], and Duggal and Kim [6]. It is immediate from the definition that (G - n - P)-operators A are normal with spectra $\sigma(A)$, subsets of the set $\{0\} \cup \{ {}^{n+1}\sqrt{1} \}$.

O2023Korean Mathematical Society

Received October 27, 2022; Revised February 4, 2023; Accepted February 24, 2023.

²⁰²⁰ Mathematics Subject Classification. Primary 47A62, 47B10, 47B20; Secondary 15A69, 47A05, 47B47.

Key words and phrases. Hilbert space, generalised n-projection, Aluthge transform of a product of operators, tensor products, Hilbert-Schmidt operator.

The second named author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1F1A1057574).

Given a commuting pair of operators $A, B \in \mathcal{B}(H)$ such that $A, B \in (G - n - P)$, it is straightforward to see that $AB \in (G - n - P)$. The reverse implication: does A, B commute and $AB \in (G - n - P)$ imply A and B, or a multiple thereof, in (G - n - P) was considered in [6], where it is shown that if ||AB|| = ||A|| ||B|| and $\sigma(A), \sigma(B)$ are finitely countable, then there exist direct sum decompositions $\frac{A}{||A||} = E_1 \oplus E_2$ and $\frac{B}{||B||} = F_1 \oplus F_2$ such that $E_iF_i = F_iE_i$ $(i = 1, 2), E_1$ (or, F_1) is unitary and F_1 (respectively, E_1) is normal, E_2 (or, F_2) is quasinilpotent and $E_2F_2 = 0$. The Aluthge transform of an operator $A \in \mathcal{B}(H)$ with polar decomposition A = UP is the operator $\tilde{A} = P^{\frac{1}{2}}UP^{\frac{1}{2}}$. Evidently, $A \in (G - n - P)$ implies $\tilde{A} \in (G - n - P)$. The converse fails. Thus, if we let $A = A_1 \oplus A_2 \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H}), A_1^{*n} = A_1$ and $A_2^2 = 0$, then A is not normal, hence it can not be (G - n - P) for any value of n. However, if A_2 has the polar decomposition $A_2 = U_2P_2$, then, since $A_2^2 = U_2P_2^{\frac{1}{2}} \left[P_2^{\frac{1}{2}}U_2P_2^{\frac{1}{2}}\right]P_2^{\frac{1}{2}} = 0$ if and only if $\tilde{A}_2 = 0, \tilde{A} = \tilde{A}_1 \oplus \tilde{A}_2 = \tilde{A}_1 \oplus 0 \in (G - n - P)$.

Given operators $A, B \in \mathcal{B}(H)$ such that the Aluthge transform AB of ABis (G - n - P), we consider in the following the problem of determining the structure of the operators A, B, A and B. For this, an important first step is the ensuring of a reasonable relationship between the polar forms of AB and (the Aluthge transforms) \hat{A} , \hat{B} of A, B, respectively. In general, there is little relationship between the product of the Aluthge transforms of A and B and the Aluthge transform of the product AB. For example, if $A, B \in \mathcal{B}(H)$ are defined by $Ax = \left(0, \frac{1}{2}x_1, 2x_2, \frac{1}{2}x_3, 2x_4, \ldots\right)$ and $Bx = (0, a_1x_1, a_2x_2, a_3x_3, \ldots),$ where $x = (x_1, x_2, x_3, ...) \in \mathcal{H}$ and $a_j = e^{i\theta_j} |a_j|$, then $\tilde{A}x = (0, x_1, x_2, x_3, ...)$, $\tilde{B}x = (0, e^{i\theta_1}|a_1a_2|x_1, e^{i\theta_2}|a_2a_3|x_2, \ldots)$ and $\widetilde{AB} \neq \tilde{A}\tilde{B} \neq \tilde{B}\tilde{A}$. A simple commutativity hypothesis on A and B is not enough: what one needs here is the double commutativity hypothesis $AB - BA = AB^* - B^*A = 0$. Such a doubly commutative hypothesis ensures that if A, B have the polar forms A = UP and B = VQ, then $AB = \tilde{A}\tilde{B} = \tilde{B}\tilde{A}$. We prove that if A, B doubly commute, the spectrum of AB is the product of the spectra of A and B and $||A|| ||B|| \le ||\widetilde{AB}||$, then $\widetilde{AB} \in (G-n-P)$ if and only if there exist decompositions $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 =$ $\mathcal{H}_0 \oplus (\mathcal{H}_{00} \oplus \mathcal{H}_u) \text{ such that } A = \left\| \tilde{A} \right\| (A_{00} \oplus (A_0 \oplus A_u)) \in B(\mathcal{H}_0 \oplus (\mathcal{H}_{00} \oplus \mathcal{H}_u))$ and $B = \|\tilde{B}\| (B_0 \oplus B_u) \in B(\mathcal{H}_0 \oplus \mathcal{H}_1)$, where $A_{00}B_0$ and A_0 are 2-nilpotents, A_u and B_u are unitaries, $A_u^{*n} = A_u$ and $B_u^{*n} = B_u$. (Here, either of the components A_0 , B_0 and A_{00} may be missing, i.e., act on the 0 space.) It is seen that a necessary and sufficient condition for the operators αA , βB , $\alpha \tilde{A}$ and $\beta \tilde{B}$, $\alpha = \frac{1}{\|\tilde{A}\|}$ and $\beta = \frac{1}{\|\tilde{B}\|}$, to be (G - n - P) is that A and B are spectrally normaloid at 0. Tensor products $A \otimes B$ such that $A \otimes B \in (G - n - P)$ are considered.

In the following, we shall denote the commutator AB - BA of A and B by [A, B]. The spectrum, the approximate point spectrum, the surjectivity spectrum, the spectral radius $\lim_{n\to\infty} ||A^n||^{\frac{1}{n}}$ and the peripheral spectrum $\{\lambda \in \sigma(A) : |\lambda| = r(A)\}$ [8, p. 225] will be denoted by $\sigma(A)$, $\sigma_a(A)$, $\sigma_s(A)$, r(A) and $\sigma_{\pi}(A)$, respectively. Recall that the isolated points of the spectrum of a normal operator are (poles of the resolvent of the operator, hence) reducing eigenvalues of the operator.

2. Preliminaries

We start by recalling some facts from [1, 6, 7, 9]. The hypothesis $A \in (G - n - P)$, i.e., $A^{*n} = A$, implies

$$A^*A = A^{*n+1} = A^{*n}A^* = AA^*, \ A^{*n+1} = (A^*A) = A^{n+1},$$

hence A is normal and A^{n+1} is self-adjoint. Consequently,

$$\sigma(A) = \sigma_a(A) = \sigma_s(A) \subseteq \{0\} \cup \{ \sqrt[n+1]{1} \}, \ \|A\| = 1.$$

The spectrum of (the normal operator) A being a finite set consists of normal eigenvalues of A (i.e., the corresponding eigenspaces are reducing) and A has a direct sum representation of type

$$A = \bigoplus_{i=1}^{n+1} A \mid_{\mathcal{H}_i} \oplus A \mid_{\mathcal{H}_0} = \bigoplus_{i=1}^{n+1} \lambda_i I_i \oplus 0 = \mathcal{A}_1 \oplus 0,$$

where $\mathcal{H}_i = (A - \lambda_i I)^{-1}(0)$, $\lambda_0 = 0$, λ_i , $1 \le i \le n + 1$, are the (n + 1)th roots of unity, I_i is the unity of $\mathcal{B}(\mathcal{H}_i)$ and the operator \mathcal{A}_1 is unitary. (Here some of the components $A \mid_{\mathcal{H}_i}, i = 0, 1, ..., n + 1$, may be missing.)

If we let (QP), (PL) and (N) denote, respectively, the classes of operators $A \in \mathcal{B}(H)$ such that

$$A \in (QP) \iff A^{n+2} = A,$$

 $A \in (PL) \iff A$ is a partial isometry (i.e., $AA^*A = A$) and
 $A \in (N) \iff [A, A^*] = 0$, i.e., A is normal,

then operators $A \in (G - n - P)$ have the following structural properties.

Proposition 2.1 ([6]). The following statements are mutually equivalent.

(i) $A \in (G - n - P)$. (ii) $A \in (QP) \land (PL) \land (N)$. (iii) $A \in (QP) \land (N)$. (iv) $A \in (QP) \land (PL)$.

The eigenvalues λ of a contraction operator $A \in \mathcal{B}(H)$ of length one (i.e., such that $|\lambda| = 1$) are normal eigenvalues of the operator: if $(A - \lambda I)x = 0$ for an $x \in \mathcal{H}$, then

$$||(A - \lambda I)^* x||^2 \le ||A^* x||^2 - 2||A^* x|| ||\overline{\lambda} x|| + ||\overline{\lambda} x||^2 \le 0.$$

The ascent (resp., descent) of $A \in \mathcal{B}(H)$, asc(A) (resp., dsc(A)), is the least positive integer n such that $A^n(0) = A^{n+1}(0)$ (resp., $A^n(\mathcal{H}) = A^{n+1}(\mathcal{H})$); if no such integer n exists, then asc $(A) = \infty$ (resp., dsc $(A) = \infty$). An isolated pointed λ of the spectrum of A, $\lambda \in iso(A)$, is a pole (of the resolvent) of Aof order m if asc $(A - \lambda I) = dsc(A - \lambda I) = m < \infty$. The deficiency indices $\alpha(A - \lambda I)$ and $\beta(A - \lambda I)$ are the integers $\alpha(A - \lambda I) = \dim(A - \lambda I)^{-1}(0)$ and $\beta(A - \lambda I) = \dim(A^* - \overline{\lambda}I)^{-1}(0)$. The operator A is normaloid if r(A) =||A||. Recall from [8, Proposition 54.2] that if a non-trivial operator $A \in \mathcal{B}(H)$ is normaloid and $\lambda \in \sigma_{\pi}(A)$ (thus, $|\lambda| = ||A||$), then $\operatorname{asc}(A - \lambda I) \leq 1$ and $\beta(A - \lambda I) > 0$.

Given an operator $A \in \mathcal{B}(H)$ with polar decomposition A = UP, the Aluthge transform $\tilde{A} = P^{\frac{1}{2}}UP^{\frac{1}{2}}$ preserves, often improves upon, many spectral properties of the operator A. If the product $AB \in \mathcal{B}(H)$ of $A, B \in \mathcal{B}(H)$ has the polar form AB = W|AB|, then $\widetilde{AB} = |AB|^{\frac{1}{2}}W|AB|^{\frac{1}{2}}$. How is the Aluthge transform \widetilde{AB} of the product AB related to the product of the Aluthge transforms of A and B? Ensuring a reasonable relationship requires the assumption of certain commutativity hypotheses on A and B. It is not enough to assume that [A, B] = 0, and a more reasonable hypothesis here is that of doubly commutative. $A, B \in \mathcal{B}(H)$ doubly commute if $[A, B] = [A, B^*] = 0$. If A, B doubly commute, and if B has the polar decomposition B = VQ, then a straightforward argument (depending almost entirely upon the facts that kerU = kerP, kerV = kerQ and $\overline{P(\mathcal{H})} \oplus \text{ker}P = \overline{Q(\mathcal{H})} \oplus \text{ker}V = \mathcal{H}$) proves that

$$[P,B] = [P,B^*] = [U,B] = [U,B^*] = [Q,A] = [Q,A^*] = [V,A] = [V^*,A] = 0$$

and hence that

$$[P,Q] = [U,V] = [P,V] = [Q,U] = [U^*,V] = 0.$$

Thus if AB has the polar decomposition AB = W|AB|, see above, then

$$AB = W|AB| = W|A||B| = UV|A||B| = UVPQ$$

and

$$\widetilde{AB} = |AB|^{\frac{1}{2}}W|AB|^{\frac{1}{2}} = |A|^{\frac{1}{2}}|B|^{\frac{1}{2}}UV|A|^{\frac{1}{2}}|B|^{\frac{1}{2}}$$
$$= |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}|B|^{\frac{1}{2}}V|B|^{\frac{1}{2}} = \widetilde{AB} = \widetilde{B}\widetilde{A}.$$

(Indeed, \hat{A} and \hat{B} doubly commute.)

The operation of taking Aluthge transforms preserves the spectrum, the ascent and the descent of the operator [2,4]. Hence, an operator and its Aluthge transform have the same poles. Observe that for an operator $A \in \mathcal{B}(H)$ with polar decomposition A = UP, $A^n = UP^{\frac{1}{2}}\tilde{A}^{n-1}P^{\frac{1}{2}}$. Hence, A is an n-nilpotent, n > 1, if and only if \tilde{A} is (n - 1)-nilpotent.

3. Results

Recall from [6, Theorem 3.1] that if the operators $C, D \in \mathcal{B}(H)$, (as always, non-trivial) are such that [C, D] = 0, ||CD|| = ||C||||D||, $\sigma(CD) = \sigma(C)\sigma(D)$ and $CD \in (G - n - P)$, then there exists a decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ of \mathcal{H} , and decompositions $C = C_1 \oplus C_2$ and $D = D_1 \oplus D_2$ of C and D, such that $[C_1, D_1] = 0$, $\frac{1}{||D||}D_1$ (or, $\frac{1}{||C||}C_1$) is unitary, $\frac{1}{||C||}C_1$ (resp., $\frac{1}{||D||}D_1$) is normal, $[C_2, D_2] = 0$, D_2 (or, C_2) is quasinilpotent and $C_2D_2 = 0$. Here, if both the components C_2 and D_2 are absent (i.e., act on the 0 space), then $\frac{1}{||C||}C$ and $\frac{1}{||D||}D$ are unitaries; if, instead, one of the components C_2 and D_2 is missing then the other component is the 0 operator. Replacing operators C, D and CDby \tilde{A} , \tilde{B} and $\tilde{A}\tilde{B}$, respectively, this gives us information about the structure of the operators \tilde{A} and \tilde{B} , and hence possibly operators A and B. What if we replace C, D and CD by \tilde{A}, \tilde{B} and \tilde{AB} ? The following theorem, our main result, considers this situation.

Theorem 3.1. Given non-trivial doubly commuting operators $A, B \in \mathcal{B}(H)$ satisfying

$$\sigma(AB) = \sigma(A)\sigma(B) \text{ and } ||A|| ||B|| \le \left\|\widetilde{AB}\right\|,$$

$$\begin{split} & A\bar{B} \in (G-n-P) \text{ if and only if there exist decompositions } \mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 = \\ & \mathcal{H}_0 \oplus (\mathcal{H}_{00} \oplus \mathcal{H}_u) \text{ such that } A = \left\| \tilde{A} \right\| (A_{00} \oplus (A_0 \oplus A_u)) \in B(\mathcal{H}_0 \oplus (\mathcal{H}_{00} \oplus \mathcal{H}_u)) \\ & \text{and } B = \left\| \tilde{B} \right\| (B_0 \oplus B_u) \in B(\mathcal{H}_0 \oplus \mathcal{H}_1), \text{ where } A_{00}B_0 \text{ and } A_0 \text{ are 2-nilpotents,} \\ & A_u \text{ and } B_u \text{ are unitaries, } A_u^{*n} = A_u \text{ and } B_u^{*n} = B_u. \text{ Here, either of the components } A_0, B_0 \text{ and } A_{00} \text{ may be missing (i.e., act on the 0 space).} \end{split}$$

Proof. The proof of the theorem consists of two parts: in the first part we determine the structure of the Aluthge transforms \tilde{A} and \tilde{B} , and in the second part we translate this into what it means for the operators A and B.

The doubly commutative hypothesis on A, B implies

1

$$\widetilde{AB} = \widetilde{A}\widetilde{B}, \ \left[\widetilde{A}, \widetilde{B}\right] = \left[\widetilde{A}, \widetilde{B}^*\right] = 0.$$

The hypothesis $\widehat{AB} \in (G - n - P)$ implies \widehat{AB} is normal and $\sigma(\widehat{AB}) \subseteq \{0\} \cup \{ {}^{n+1}\sqrt{1} \}$ and (since Aluthge transforms preserve spectrum)

$$\cdot \left(\widetilde{AB}\right) = \left\|\widetilde{AB}\right\| = \left\|\widetilde{AB}\right\| = 1 = r(AB).$$

Since

$$\left\|\tilde{A}\right\| = \left\|P^{\frac{1}{2}}UP^{\frac{1}{2}}\right\| \le \|PUP\|^{\frac{1}{2}} \le \|A\|$$

and similarly $\left\|\tilde{B}\right\| \leq \|B\|$, the hypothesis $\|A\| \|B\| \leq \left\|\widetilde{AB}\right\|$ implies $1 = \left\|\widetilde{AB}\right\| = \left\|\tilde{AB}\right\| \leq \left\|\tilde{A}\right\| \left\|\tilde{B}\right\| \leq \|A\| \|B\| \leq \left\|\widetilde{AB}\right\|,$ i.e.,

1560

$$\left\|\widetilde{AB}\right\| = \left\|\widetilde{A}\right\| \left\|\widetilde{B}\right\| = \|A\| \|B\| = 1$$

Define contractions $E, F \in \mathcal{B}(H)$ by

$$E = \alpha \tilde{A}, \ F = \beta \tilde{B}; \ \alpha = \frac{1}{\left\|\tilde{A}\right\|}, \ \beta = \frac{1}{\left\|\tilde{B}\right\|}, \ \alpha\beta = 1.$$

Then

$$[E, F] = 0, ||EF|| = 1 = ||E|| ||F|| \text{ and } \sigma(EF) = \sigma(E)\sigma(F).$$

The hypothesis $\widetilde{AB} \in (G - n - P)$ implies $EF \in (G - n - P)$, hence

$$\sigma(EF)) \subseteq \{0\} \cup \left\{ \sqrt[n+1]{1} \right\}$$

and $\sigma(E)$, $\sigma(F)$ are subsets of the set $\{0\} \cup \{ {}^{n+1}\sqrt{1} \}$. We have the following four possibilities:

- (a) $\sigma(E) = S_1 = \bigcup_{i=1}^k \{\lambda_i\} \subseteq \{ {}^{n+\sqrt{1}} \}$ and $\sigma(F) = S_2 = \bigcup_{j=1}^t \{\mu_j\} \subseteq \{ {}^{n+\sqrt{1}} \}, |\lambda_i| = |\mu_j| = 1 \text{ for all } 1 \le i \le k \le n+1 \text{ and } 1 \le j \le t \le n+1;$ (b) $\sigma(E) = \{0\} \cup S_1 \text{ and } \sigma(F) = S_2;$ (c) $\sigma(E) = S_1 \text{ and } \sigma(F) = \{0\} \cup S_2;$ (d) $\sigma(E) = \{0\} \cup C = \{0$
- (d) $\sigma(E) = \{0\} \cup S_1 \text{ and } \sigma(F) = \{0\} \cup S_2.$

If (a) holds, then ||E|| = r(E) = 1 = r(F) = ||F||, E and F are normaloid operators with spectrum consisting of the peripheral spectrum. Hence, see [8, Proposition 54.2],

$$\operatorname{asc}(E - \lambda_i I) \le 1$$
, $\operatorname{asc}(F - \mu_j I) \le 1$, $\beta(E - \lambda_i I) > 0$ and $\beta(F - \mu_j I) > 0$

for all $1 \leq i \leq k$ and $1 \leq j \leq t$. E^* and F^* being contractions, $\overline{\lambda_i}$ and $\overline{\mu_j}$ are eigenvalues of E^* and F^* respectively. The eigenvalues in the peripheral spectrum of a contraction being normal eigenvalues of the contraction, λ_i and μ_j are simple (i.e., mulptiplicity one) eigenvalues of E and F respectively. Furthermore,

$$E = \bigoplus_{i=1}^k \lambda_i I|_{\mathcal{H}_{\lambda_i}} = \bigoplus_{i=1}^k E_i \text{ and } F = \bigoplus_{j=1}^t \mu_j I|_{\mathcal{H}_{\mu_j}} = \bigoplus_{j=1}^t F_j,$$

where $\mathcal{H}_{\lambda_i} = (E - \lambda_i I)^{-1}(0)$ and $\mathcal{H}_{\mu_j} = (F - \mu_j I)^{-1}(0)$ for all $1 \leq i \leq k$ and $1 \leq j \leq t$. Thus E and F are unitaries such that $\tilde{A} = \alpha E$ and $\tilde{B} = \beta F$; scalars α and β defined as above.

If (b) holds, then an argument similar to the one above implies

$$E = E_0 \oplus \lambda_i I|_{\mathcal{H}_{\lambda_i}} = \bigoplus_{i=0}^k E_i \text{ and } F = \bigoplus_{j=1}^t \mu_j I|_{\mathcal{H}_{\mu_j}} = \bigoplus_{j=1}^t F_j,$$

where $\sigma(E_0) = \{0\}$ (thus, E_0 is a quasinilpotent operator in $B(\mathcal{H}_0) = B(\mathcal{H} \ominus \oplus_{i=1}^k \mathcal{H}_{\lambda_i})$). The eigenvalues λ_i and μ_j are simple, normal eigenvalues. Let $F \in B(\mathcal{H}_0 \oplus_{i=1}^k \mathcal{H}_{\lambda_i})$ have the matrix representation $F = [F_{ij}]_{i,j=0}^k$. The commutativity E and F then implies

$$E_i F_{ij} - F_{ij} E_j = (\lambda_i - \lambda_j) F_{ij} = 0, \ 0 \le i, j \le k.$$

Since $\lambda_i \neq \lambda_j$ for all $i \neq j$, $F_{ij} = 0$ for all $0 \leq i \neq j \leq k$ and

$$F = \bigoplus_{i=0}^{k} F_{ii}, F_{ii}$$
 unitary for all $0 \le i \le k$.

The operator E_0 being quasinilpotent, E_0F_{00} is quasinilpotent; the normality of EF implies that $E_0F_{00} = 0$, and this in view of the fact that F_{00} is unitary implies $E_0 = 0$. In conclusion,

$$E = 0 \oplus_{i=1}^{k} E_i, \ F = \bigoplus_{i=0}^{k} F_{ii}; \ F_{00}, \ E_i \text{ and } F_{ii} \text{ unitary for all } 1 \le i \le k.$$

The case in which (c) holds is similarly dealt with: we have

$$E = \bigoplus_{j=0}^{t} E_{jj}, \ F = 0 \bigoplus_{j=1}^{t} F_j; \ E_{00}, \ E_{jj} \text{ and } F_j \text{ unitary for all } 1 \le j \le t.$$

This brings us to case (d). If (d) holds, then

$$E = E_0 \oplus_{i=1}^k \lambda_i I|_{\mathcal{H}_{\lambda_i}} = \oplus_{i=0}^k E_i, \ F = F_0 \oplus_{j=1}^t \mu_j|_{\mathcal{H}_{\mu_j I}} = \oplus_{j=0}^t F_j,$$

where E_0 and F_0 are quasinilpotents. Letting $E \in B\left(\bigoplus_{j=0}^t \mathcal{H}_{\mu_j}\right)$ have the matrix representation $E = [E_{ij}]_{i,j=0}^t$, it is seen that $E_{ij} = 0$ for all $0 \le i \ne j \le t$ and $E = \bigoplus_{i=0}^t E_{ii}$. The operator F_0 being quasinilpotent, the commutativity of E, F taken along with the normality of EF (hence, $E_{00}F_0$) implies

$$E_{00}F_0 = 0 = [E_{00}, F_0].$$

Furthermore, if $0 \in \sigma(E_{ii})$ for some $1 \leq i \leq t$, then E_{ii} is a direct sum $E_{ii} = L_0 \oplus L_1 \in B\left(E_{ii}^{-1}(0) \oplus (H_{\mu_i} \oplus E_{ii}^{-1}(0))\right)$ of a quasinilpotent operator L_0 and a unitary operator L_1 ; since $E_{ii}F_i$ is normal (because EF is), L_0 is the 0 operator and $E_{ii} = 0 \oplus L_1$. Thus we conclude:

$$E = E_{00} \oplus (0 \oplus E_u)$$

for some unitary E_u with $\sigma(E_u) = S_1$.

To conclude what the above translates into for operators A and B, we start by proving that αA and βB are contractions. (Recall: $\alpha = \frac{1}{\|\tilde{A}\|}, \beta = \frac{1}{\|\tilde{B}\|}$ and $\alpha\beta = 1$.) As seen above $\|A\|\|B\| = \|\tilde{A}\|\|\tilde{B}\|$; hence $\|\alpha A\|\|\beta B\| = 1$. Since Aluthge transforms preserve spectrum, $\sigma(\alpha A) = \sigma(\alpha \tilde{A}) \subseteq \{0\} \cup S_1 \subseteq \{0\} \cup \partial(\mathbb{D})$ and $\sigma(\beta B) = \sigma(\beta \tilde{B}) = \{0\} \cup S_2 \subseteq \{0\} \cup \partial(\mathbb{D})$. Consequently,

$$r(\alpha A) = r(\beta B) = 1$$

If αA and βB are normaloid, then there is nothing to prove. So assume one of them, say αA , has norm 1. (Observe that $||A|| ||B|| = ||\tilde{A}|| ||\tilde{B}||$ rules out both αA and αB having norm greater than one.) Then $||A|| = ||\tilde{A}||$, and hence $||A|| ||B|| = ||\tilde{A}|| ||\tilde{B}||$ forces $||B|| = ||\tilde{B}||$ and $||\beta B|| = ||\beta \tilde{B}|| = 1$.

Aluthge transforms preserve both the ascent and the descent at non-zero points of the spectrum of an operator [2, 4]. Hence all non-zero points of the spectrum of αA and βB are poles (of the resolvent), and therefore eigenvalues, of the operators. Since all these eigenvalues lie in $\partial(\mathbb{D})$, and the operators

are contractions, all non-zero points of the spectra of αA and βB are normal eigenvalues of the operators. In conclusion,

$$A = \alpha \left(A_0 \oplus_{i=1}^k \lambda_i I_i \right) \text{ and } B = \beta \left(B_0 \oplus_{j=1}^t \mu_j \mathbf{I}_j \right),$$

where $I_i = I|_{(\alpha A - \lambda_i I)^{-1}(0)}$, $\mathbf{I}_j = I|_{(\beta B - \mu_j I)^{-1}(0)}$ and the operators A_0, B_0 are quasinilpotent. For the cases (a) to (d) this translates into the following. (a) If $\sigma(A) = \sigma\left(\tilde{A}\right) = \|\tilde{A}\| S_1$ and $\sigma(B) = \sigma\left(\tilde{B}\right) = \|\tilde{B}\| S_2$, then

$$A = \left\| \tilde{A} \right\| \left(\bigoplus_{i=1}^{k} \lambda_{i} I_{i} \right) = \left\| \tilde{A} \right\| A_{u} \text{ and } B = \left\| \tilde{B} \right\| \left(\bigoplus_{j=1}^{t} \mu_{j} \mathbf{I}_{j} \right) = \left\| \tilde{B} \right\| B_{u}$$

Since $\tilde{A} = \|\tilde{A}\| A_u = \|\tilde{A}\| E$ and $\tilde{B} = \|\tilde{B}\| B_u = \|\tilde{B}\| F$, the unitaries A_u and B_u satisfy $A_u = E$ and $B_u = F$. Evidently, $AB \in (G - n - P)$.

(b) and (c) If
$$\sigma(A) = \sigma\left(\tilde{A}\right) = \left\|\tilde{A}\right\| S_1$$
 and $\sigma(B) = \sigma\left(\tilde{B}\right) = \left\|\tilde{B}\right\| S_2$, then

$$A = \left\| \tilde{A} \right\| (A_0 \oplus_{i=1}^k \lambda_i I_i) = \left\| \tilde{A} \right\| (A_0 \oplus A_u)$$

and

$$B = \left\| \tilde{B} \right\| \left(\bigoplus_{j=1}^{t} \mu_j \mathbf{I}_j \right) = \left\| \tilde{B} \right\| B_u$$

(with respect to $\mathcal{H} = (\mathcal{H} \ominus_{i=1}^k (\alpha A - \lambda_i I)^{-1}(0)) \oplus_{i=1}^k (\alpha A - \lambda_i I)^{-1}(0))$, where A_0 is quasinilpotent. Since

$$\widetilde{(\alpha A)} = \alpha \left(\tilde{A}_0 \oplus A_u \right) = E = 0 \oplus_{i=1}^k E_i \text{ and } \beta B_u = F = \oplus_{i=0}^k F_{ii},$$

the operator A_0 is 2-nilpotent. A similar argument shows that if $\sigma(A) = \sigma\left(\tilde{A}\right) = \|\tilde{A}\| S_1$ and $\sigma(B) = \sigma\left(\tilde{B}\right) = \|\tilde{B}\| S_2$, then $A = \|\tilde{A}\| (\oplus^t - E_{-}) = \|\tilde{A}\| A \text{ and } B = \|\tilde{B}\| (B_{+} \oplus^t - E_{-}) = \|\tilde{B}\| (B_{+} \oplus B_{-})$

$$A = \left\|\tilde{A}\right\| \left(\bigoplus_{j=0}^{t} E_{jj} \right) = \left\|\tilde{A}\right\| A_u \text{ and } B = \left\|\tilde{B}\right\| \left(B_0 \bigoplus_{j=1}^{t} F_j \right) = \left\|\tilde{B}\right\| \left(B_0 \oplus B_u \right),$$

where B_0 is 2-nilpotent and A_u , B_u are unitary. (Evidently, $AB \notin (G - n - P)$ in either of the cases, unless A_0 , respectively B_0 , is the 0 operator.)

(d) Finally, if $(\sigma(A) = \sigma(\tilde{A}) = ||\tilde{A}||S_1 \text{ and } \sigma(B) = \sigma(\tilde{B}) = ||\tilde{B}||S_2$, then $B = ||\tilde{B}||(B_0 \oplus B_u), \sigma(B_0) = \{0\}$ and $B_u = \bigoplus \mu_j \mathbf{I}_j = \bigoplus_{j=1}^t B_j$ unitary. Letting αA have the matrix representation $[A_{ij}]_{i,j=0}^t$ with respect to the decomposition of \mathcal{H} enforced by $B_0 \oplus B_u$, the commutative property of A and B implies

$$A_{ij}B_j = B_i A_{ij}, \ 0 \le i, j \le t.$$

Hence, since $B_i - B_j = (\mu_i \mathbf{I}_i - \mu_j \mathbf{I}_j)$ for all $i \neq j$, and the operators $(B_i - B_0)$ for $i \neq 0$ and $(B_0 - B_j)$ for $j \neq 0$ are invertible, $A_{ij} = 0$ for all $0 \leq i \neq j \leq t$. Consequently

$$A = \left\| \tilde{A} \right\| \left(\bigoplus_{j=0}^{t} A_{jj} \right), \ [A_{00}, B_0] = 0 \text{ and } A_{00}B_0 \text{ is quasinilpotent.}$$

Furthermore, if $0 \in \sigma(\bigoplus_{j=1}^{t} A_{jj})$, then $\bigoplus_{j=1}^{t} A_{jj} = A_0 \oplus A_u$, where A_0 is quasinilpotent and A_u is unitary. Thus we conclude:

$$A = \left\| \tilde{A} \right\| (A_{00} \oplus (A_0 \oplus A_u)) \text{ and } \tilde{B} = \left\| \tilde{B} \right\| (B_0 \oplus B_u).$$

Taking Aluthge transforms

$$\widetilde{A} = \left\| \widetilde{A} \right\| \left(\widetilde{A_{00}} \oplus \left(\widetilde{A}_0 \oplus A_u \right) \right) \text{ and } B = \left\| \widetilde{B} \right\| \left(\widetilde{B_0} \oplus B_u \right).$$

Since \tilde{A}, \tilde{B} doubly commute and $\tilde{A}\tilde{B}$ is normal,

$$\widetilde{A_{00}}\widetilde{B_0} = 0 \iff A_{00}B_0 \text{ is } 2 - \text{nilpotent.}$$

To determine \tilde{A}_0 , let B_u have the matrix representation $[B_{ij}]_{i,j=1}^2$ (with respect to the decomposition enforced by $\tilde{A}_0 \oplus A_u$). Then

$$\tilde{A}_0 B_{12} = B_{12} A_u$$
 and $\tilde{A}_0^* B_{12} = B_{12} A_u^*$;
 $A_u B_{21} = B_{21} \tilde{A}_0$ and $A_u^* B_{21} = B_{21} \tilde{A}_0^*$.

This implies $B_{12} = B_{21} = 0$ and hence (by the normality of $\tilde{A}_0 B_{11}$ and the fact that $\sigma(\tilde{A}_0) = \{0\}$)

 $\tilde{A}_0 B_{11} = 0 \iff \tilde{A}_0 = 0 \iff A_0$ is 2-nilpotent.

Summarising, if (d) holds, then

$$A = \left\| \tilde{A} \right\| (A_{00} \oplus (A_0 \oplus A_u)) \text{ and } B = \left\| \tilde{B} \right\| (B_0 \oplus B_u),$$

where A_u, B_u are unitary, $[A_{00}, B_0] = 0$, and $A_{00}B_0$ and A_0 are 2-nilpotent. (Here, as pointed out in the statement of the theorem, either of the components may be absent.)

To complete the proof of the theorem, we prove that if A, B are as in the general case (d) above, then $\widetilde{AB} \in (G - n - P)$. We have

$$\widetilde{AB} = \widetilde{AB} = \left\| \widetilde{A} \right\| \left\| \widetilde{B} \right\| \left(\widetilde{A_{00}} \widetilde{B_0} \oplus \left(\widetilde{A_0} \oplus A_u \right) B_u \right) = \widetilde{A_{00}} \widetilde{B_0} \oplus \left(\widetilde{A_0} \oplus A_u \right) B_u,$$

where $A_{00}B_0 = A_0 = 0$ (since $A_{00}B_0$ and A_0 are 2-nilpotent). Thus

$$\widetilde{AB} = 0 \oplus (0 \oplus A_u)B_u$$
, A_u and B_u unitary.

A straightforward computation (similar to our earlier ones) using the commutativity of $0 \oplus A_u$ and B_u shows that $(0 \oplus A_u)B_u = (0 \oplus A_u)(B_{u1} \oplus B_{u2}) = 0 \oplus A_u B_{u2}$; B_{u1} and B_{u2} unitaries. Hence

$$\widetilde{AB}^{*n} = 0 \oplus (0 \oplus A_u^{*n} B_{u2}^{*n})$$
$$= 0 \oplus (0 \oplus A_u B_{u2}) = \widetilde{AB},$$

since $A_u^{*n} = A_u$ and $B_{u2}^{*n} = B_{u2}$.

1563

Remark 3.2. There is nothing sacrosanct about our choice of the operator B to have the representation $B = \|\tilde{B}\| (B_{00} \oplus B_u)$. We could have chosen $A = \|\tilde{A}\| (A_{00} \oplus A_u)$, which would have then forced $B = \|\tilde{B}\| (B_{00} \oplus (B_0 \oplus B_u))$.

The hypotheses of the theorem are not sufficient to guarantee the normality, much less the property of being (G - n - P), of either of the operator A, B, AB, \tilde{A} and \tilde{B} . Indeed, if $0 \in \sigma(A) \cap \sigma(B)$, then $AB \in (G - n - P)$, hence is normal, if and only if $A_0 = A_{00}B_0 = 0$. A necessary and sufficient condition for suitable multiples of \tilde{A} , \tilde{B} , A and B to be (G - n - P) may be given as follows.

For a Banach space operator $T \in B(\mathcal{X})$ with a spectral set σ , let P_{σ} denote the spectral projection associated with σ [8, p. 204]. The operator T is said to be spectrally normaloid if $T|_{P_{\sigma}(\mathcal{X})}$ is normaloid for every spectral set σ of $\sigma(T)$ [8, p. 227]. The proof of Theorem 3.1 implies the following corollary.

Corollary 3.3. A necessary and sufficient condition for the operators $\alpha \hat{A}$, $\alpha \hat{A}$, $\beta \tilde{B}$ and βB of Theorem 3.1 to be (G - n - P) is that A, B are spectrally normaloid at 0.

The spectrally normaloid at 0 hypothesis of the theorem ensures that the quasinilpotent parts of the operators A, B, \tilde{A} and \tilde{B} are the 0 operator. We observe here that the spectrally normaloid property at 0 for A (resp., B) is vacuously satisfied if $0 \notin \sigma(A)$ (resp., $0 \notin \sigma(B)$).

A particular case of Theorem 3.1, where a number of the hypotheses of the theorem are inbuilt into the operators being considered, is that of the tensor products of operators satisfying the (G - n - P) property.

Let $\mathcal{H}\bar{\otimes}\mathcal{H}$ denote the completion, endowed with a reasonable uniform cross norm, of the algebraic tensor product $\mathcal{H} \otimes \mathcal{H}$. For $S, T \in \mathcal{B}(\mathcal{H})$, let $S \otimes T \in \mathcal{B}(\mathcal{H}\bar{\otimes}\mathcal{H})$ denote the tensor product of S and T. Define operators $A, B \in \mathcal{B}(\mathcal{H}\bar{\otimes}\mathcal{H})$ by $A = S \otimes I$ and $B = I \otimes T$, and let S, T, A, B have the polar decompositions

$$S = U_1|S|, T = V_1|T|, A = UP \text{ and } B = VQ.$$

Then A and B doubly commute,

$$\begin{split} UP &= (U_1 \otimes I)(|S| \otimes I), \ VQ = (I \otimes V_1)(I \otimes |T), \\ \tilde{A} &= P^{\frac{1}{2}}UP^{\frac{1}{2}} = \left(|S|^{\frac{1}{2}} \otimes I\right)(U_1 \otimes I)\left(|S|^{\frac{1}{2}} \otimes I\right), \\ \tilde{B} &= Q^{\frac{1}{2}}VPQ\frac{1}{2} = \left(I \otimes |T|^{\frac{1}{2}}\right)(I \otimes V_1)\left(I \otimes |T|^{\frac{1}{2}}\right) \text{ and} \\ \widetilde{AB} &= \tilde{A}\tilde{B} = \tilde{B}\tilde{A} = \left(|S|^{\frac{1}{2}} \otimes |T|^{\frac{1}{2}}\right)(U_1 \otimes V_1)\left(|S|^{\frac{1}{2}} \otimes |T|^{\frac{1}{2}}\right). \end{split}$$

Furthermore,

$$\left|\widetilde{AB}\right\| = \left\|\widetilde{A}\right\| \left\|\widetilde{B}\right\|,$$

GENERALISED n-PROJECTIONS

$$\sigma\left(\widetilde{AB}\right) = \sigma\left(\widetilde{S}\otimes\widetilde{T}\right) = \sigma\left(\widetilde{S}\right)\sigma\left(\widetilde{T}\right) = \sigma\left(\widetilde{A}\right)\sigma\left(\widetilde{B}\right)$$
$$= \sigma(S)\sigma(T) = \sigma(A)\sigma(B).$$

Evidently,

$$A \in (G - n - P) \iff S \in (G - n - P),$$
$$\tilde{B} \in (G - n - P) \iff \tilde{T} \in (G - n - P) \text{ and}$$
$$\widetilde{AB} \in (G - n - P) \iff \tilde{ST} \in (G - n - P).$$

Combining this information, we have:

Corollary 3.4. Given operators $S, T \in \mathcal{B}(H)$, if $\widetilde{S \otimes T} \in (G - n - P)$ and $||S \otimes T|| \leq ||\widetilde{S \otimes T}||$, then $\frac{S}{||\widetilde{S}||}, \frac{T}{||\widetilde{T}||} \in (G - n - P)$ if and only if S, T are spectrally normaloid at 0.

The extension of Corollary 3.4 to the Hilbert-Schmidt class $\mathcal{B}(\mathcal{C}_2(\mathcal{H}))$ is almost automatic for the reason that the tensor product $S \otimes T$ can be identified with the restriction $\mathcal{E}_{S,T^*}|_{\mathcal{B}(\mathcal{C}_2(\mathcal{H}))}$ of the elementary operator $\mathcal{E}_{S,T^*}(X) = SXT^*$, $X \in \mathcal{B}(\mathcal{C}_2(\mathcal{H}))$ [3].

Corollary 3.5. Given operators $S, T \in \mathcal{B}(H)$ such that $\left\|\widetilde{S \otimes T}\right\| \leq \|S \otimes T\|$ and $\mathcal{E}_{\tilde{S},\tilde{T^*}} \in (G - n - P)$, $\frac{S}{\|\tilde{S}\|}$ and $\frac{T}{\|\tilde{T}\|}$ are G - n - P if and only if S and Tare spectrally normaloid at 0.

References

- J. K. Baksalary and X. J. Liu, An alternative characterization of generalized projectors, Linear Algebra Appl. 388 (2004), 61–65. https://doi.org/10.1016/j.laa.2004.01.010
- B. A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126 (1998), no. 4, 1055–1061. https://doi.org/10.1090/S0002-9939-98-04218-X
- [3] A. Brown and C. M. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162–166. https://doi.org/10.2307/2035080
- [4] J. J. Buoni and J. D. Faires, Ascent, descent, nullity and defect of products of operators, Indiana Univ. Math. J. 25 (1976), no. 7, 703-707. https://doi.org/10.1512/iumj.1976. 25.25054
- [5] H. K. Du and Y. Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005), 313–318. https://doi.org/10.1016/j.laa.2004.11.027
- [6] B. P. Duggal and I. H. Kim, Products of generalized n-projections, Linear Multilinear Algebra. https://doi.org/10.1080/03081087.2021.2002249
- [7] J. Groß and G. Trenkler, Generalized and hypergeneralized projectors, Linear Algebra Appl. 264 (1997), 463–474. https://doi.org/10.1016/S0024-3795(96)00541-1
- [8] H. G. Heuser, Functional Analysis, translated from the German by John Horváth, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1982.
- L. Lebtahi and N. Thome, A note on k-generalized projections, Linear Algebra Appl. 420 (2007), no. 2-3, 572-575. https://doi.org/10.1016/j.laa.2006.08.011

BHAGWATI P. DUGGAL FACULTY OF SCIENCES AND MATHEMATICS UNIVERSITY OF NIŠ P.O. BOX 224, 18000 NIŠ, SERBIA Email address: bpduggal@yahoo.co.uk

IN HYOUN KIM DEPARTMENT OF MATHEMATICS INCHEON NATIONAL UNIVERSITY INCHEON 22012, KOREA Email address: ihkim@inu.ac.kr