
Bull. Korean Math. Soc. 60 (2023), No. 6, pp. 1555–1566

https://doi.org/10.4134/BKMS.b220747

pISSN: 1015-8634 / eISSN: 2234-3016

OPERATORS A, B FOR WHICH THE ALUTHGE

TRANSFORM ÃB IS A GENERALISED n-PROJECTION

Bhagwati P. Duggal and In Hyoun Kim

Abstract. A Hilbert space operator A ∈ B(H) is a generalised
n-projection, denoted A ∈ (G−n−P ), if A∗n = A. (G−n−P )-operators

A are normal operators with finitely countable spectra σ(A), subsets of

the set {0} ∪ { n+1
√
1}. The Aluthge transform Ã of A ∈ B(H) may be

(G− n− P ) without A being (G− n− P ). For doubly commuting oper-

ators A,B ∈ B(H) such that σ(AB) = σ(A)σ(B) and ∥A∥∥B∥ ≤
∥∥∥ÃB

∥∥∥,
ÃB ∈ (G − n − P ) if and only if A =

∥∥∥Ã∥∥∥ (A00 ⊕ (A0 ⊕ Au)) and

B =
∥∥∥B̃∥∥∥ (B0 ⊕ Bu), where A00 and B0, and A0 ⊕ Au and Bu, dou-

bly commute, A00B0 and A0 are 2 nilpotent, Au and Bu are unitaries,

A∗n
u = Au and B∗n

u = Bu. Furthermore, a necessary and sufficient con-

dition for the operators αA, βB, αÃ and βB̃, α = 1

∥Ã∥ and β = 1

∥B̃∥ , to
be (G− n− P ) is that A and B are spectrally normaloid at 0.

1. Introduction

Let B(H) denote the algebra of operators, i.e., bounded linear transfor-
mations, on an infinite dimensional complex Hilbert space H into itself. An
operator A ∈ B(H), with adjoint A∗, is a generalised n-projection, denoted
A ∈ (G − n − P ), if A∗n = A. Ever since the introduction of the concept
of a generalised 2-projection on a finite dimensional Hilbert space by Gross
and Trenkler [7], generalised n-projections have been studied by a number of
authors, amongst them Baksalary and Liu [1], Du and Li [5], Lebtahi and
Thome [9], and Duggal and Kim [6]. It is immediate from the definition that
(G − n − P )-operators A are normal with spectra σ(A), subsets of the set

{0} ∪ { n+1
√
1}.
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Given a commuting pair of operators A,B ∈ B(H) such that A,B ∈ (G −
n − P ), it is straightforward to see that AB ∈ (G − n − P ). The reverse
implication: does A,B commute and AB ∈ (G− n− P ) imply A and B, or a
multiple thereof, in (G−n−P ) was considered in [6], where it is shown that if
∥AB∥ = ∥A∥∥B∥ and σ(A), σ(B) are finitely countable, then there exist direct
sum decompositions A

∥A∥ = E1 ⊕E2 and B
∥B∥ = F1 ⊕F2 such that EiFi = FiEi

(i = 1, 2), E1 (or, F1) is unitary and F1 (respectively, E1) is normal, E2 (or,
F2) is quasinilpotent and E2F2 = 0. The Aluthge transform of an operator

A ∈ B(H) with polar decomposition A = UP is the operator Ã = P
1
2UP

1
2 .

Evidently, A ∈ (G−n−P ) implies Ã ∈ (G−n−P ). The converse fails. Thus,
if we let A = A1⊕A2 ∈ B(H⊕H), A∗n

1 = A1 and A2
2 = 0, then A is not normal,

hence it can not be (G − n − P ) for any value of n. However, if A2 has the

polar decomposition A2 = U2P2, then, since A2
2 = U2P

1
2
2

[
P

1
2
2 U2P

1
2
2

]
P

1
2
2 = 0 if

and only if Ã2 = 0, Ã = Ã1 ⊕ Ã2 = Ã1 ⊕ 0 ∈ (G− n− P ).

Given operators A,B ∈ B(H) such that the Aluthge transform ÃB of AB
is (G − n − P ), we consider in the following the problem of determining the

structure of the operators A,B, Ã and B̃. For this, an important first step is

the ensuring of a reasonable relationship between the polar forms of ÃB and
(the Aluthge transforms) Ã, B̃ of A , B, respectively. In general, there is little
relationship between the product of the Aluthge transforms of A and B and
the Aluthge transform of the product AB. For example, if A,B ∈ B(H) are
defined by Ax =

(
0, 1

2x1, 2x2,
1
2x3, 2x4, . . .

)
and Bx = (0, a1x1, a2x2, a3x3, . . .),

where x = (x1, x2, x3, . . .) ∈ H and aj = eiθj |aj |, then Ãx = (0, x1, x2, x3, . . .),

B̃x =
(
0, eiθ1 |a1a2|x1, e

iθ2 |a2a3|x2, . . .
)
and ÃB ̸= ÃB̃ ̸= B̃Ã. A simple com-

mutativity hypothesis on A and B is not enough: what one needs here is the
double commutativity hypothesis AB−BA = AB∗−B∗A = 0. Such a doubly
commutative hypothesis ensures that if A,B have the polar forms A = UP and

B = V Q, then ÃB = ÃB̃ = B̃Ã. We prove that if A,B doubly commute, the

spectrum of AB is the product of the spectra of A and B and ∥A∥∥B∥ ≤
∥∥∥ÃB

∥∥∥,
then ÃB ∈ (G−n−P ) if and only if there exist decompositions H = H0⊕H1 =

H0 ⊕ (H00 ⊕Hu) such that A =
∥∥∥Ã∥∥∥ (A00 ⊕ (A0 ⊕Au)) ∈ B(H0 ⊕ (H00 ⊕Hu))

and B =
∥∥∥B̃∥∥∥ (B0 ⊕Bu) ∈ B(H0 ⊕H1), where A00B0 and A0 are 2-nilpotents,

Au and Bu are unitaries, A∗n
u = Au and B∗n

u = Bu. (Here, either of the com-
ponents A0, B0 and A00 may be missing, i.e., act on the 0 space.) It is seen

that a necessary and sufficient condition for the operators αA, βB, αÃ and
βB̃, α = 1

∥Ã∥ and β = 1

∥B̃∥ , to be (G− n− P ) is that A and B are spectrally

normaloid at 0. Tensor products A ⊗ B such that Ã⊗B ∈ (G − n − P ) are
considered.
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In the following, we shall denote the commutator AB − BA of A and B
by [A,B]. The spectrum, the approximate point spectrum, the surjectivity

spectrum, the spectral radius limn→∞ ∥An∥ 1
n and the peripheral spectrum {λ ∈

σ(A) : |λ| = r(A)} [8, p. 225] will be denoted by σ(A), σa(A), σs(A), r(A) and
σπ(A), respectively. Recall that the isolated points of the spectrum of a normal
operator are (poles of the resolvent of the operator, hence) reducing eigenvalues
of the operator.

2. Preliminaries

We start by recalling some facts from [1, 6, 7, 9]. The hypothesis A ∈ (G −
n− P ), i.e., A∗n = A, implies

A∗A = A∗n+1 = A∗nA∗ = AA∗, A∗n+1 = (A∗A) = An+1,

hence A is normal and An+1 is self-adjoint. Consequently,

σ(A) = σa(A) = σs(A) ⊆ {0} ∪
{

n+1
√
1
}
, ∥A∥ = 1.

The spectrum of (the normal operator) A being a finite set consists of normal
eigenvalues of A (i.e., the corresponding eigenspaces are reducing) and A has
a direct sum representation of type

A =

n+1⊕
i=1

A |Hi
⊕A |H0

=

n+1⊕
i=1

λiIi ⊕ 0 = A1 ⊕ 0,

where Hi = (A− λiI)
−1(0), λ0 = 0, λi, 1 ≤ i ≤ n+ 1, are the (n+ 1)th roots

of unity, Ii is the unity of B(Hi) and the operator A1 is unitary. (Here some
of the components A |Hi

, i = 0, 1, . . . , n+ 1, may be missing.)
If we let (QP ), (PL) and (N) denote, respectively, the classes of operators

A ∈ B(H) such that

A ∈ (QP ) ⇐⇒ An+2 = A,

A ∈ (PL) ⇐⇒ A is a partial isometry (i.e., AA∗A = A) and

A ∈ (N) ⇐⇒ [A,A∗] = 0, i.e., A is normal,

then operators A ∈ (G− n− P ) have the following structural properties.

Proposition 2.1 ([6]). The following statements are mutually equivalent.
(i) A ∈ (G− n− P ).
(ii) A ∈ (QP ) ∧ (PL) ∧ (N).
(iii) A ∈ (QP ) ∧ (N).
(iv) A ∈ (QP ) ∧ (PL).

The eigenvalues λ of a contraction operator A ∈ B(H) of length one (i.e.,
such that |λ| = 1) are normal eigenvalues of the operator: if (A− λI)x = 0 for
an x ∈ H, then

∥(A− λI)∗x∥2 ≤ ∥A∗x∥2 − 2∥A∗x∥∥λx∥+ ∥λx∥2 ≤ 0.
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The ascent (resp., descent) of A ∈ B(H), asc(A) (resp., dsc(A)), is the least
positive integer n such that An(0) = An+1(0) (resp., An(H) = An+1(H)); if
no such integer n exists, then asc(A) = ∞ (resp., dsc(A) = ∞). An isolated
pointed λ of the spectrum of A, λ ∈ iso(A), is a pole (of the resolvent) of A
of order m if asc(A − λI) = dsc(A − λI) = m < ∞. The deficiency indices
α(A − λI) and β(A − λI) are the integers α(A − λI) = dim(A − λI)−1(0)
and β(A − λI) = dim(A∗ − λI)−1(0). The operator A is normaloid if r(A) =
∥A∥. Recall from [8, Proposition 54.2] that if a non-trivial operator A ∈ B(H)
is normaloid and λ ∈ σπ(A) (thus, |λ| = ∥A∥), then asc(A − λI) ≤ 1 and
β(A− λI) > 0.

Given an operatorA ∈ B(H) with polar decompositionA = UP , the Aluthge

transform Ã = P
1
2UP

1
2 preserves, often improves upon, many spectral proper-

ties of the operator A. If the product AB ∈ B(H) of A,B ∈ B(H) has the polar

form AB = W |AB|, then ÃB = |AB| 12W |AB| 12 . How is the Aluthge trans-

form ÃB of the product AB related to the product of the Aluthge transforms
of A and B? Ensuring a reasonable relationship requires the assumption of cer-
tain commutativity hypotheses on A and B. It is not enough to assume that
[A,B] = 0, and a more reasonable hypothesis here is that of doubly commu-
tative. A,B ∈ B(H) doubly commute if [A,B] = [A,B∗] = 0. If A,B doubly
commute, and if B has the polar decomposition B = V Q, then a straightfor-
ward argument (depending almost entirely upon the facts that kerU = kerP ,

kerV = kerQ and P (H)⊕ kerP = Q(H)⊕ kerV = H) proves that

[P,B] = [P,B∗] = [U,B] = [U,B∗] = [Q,A] = [Q,A∗] = [V,A] = [V ∗, A] = 0

and hence that

[P,Q] = [U, V ] = [P, V ] = [Q,U ] = [U∗, V ] = 0.

Thus if AB has the polar decomposition AB = W |AB|, see above, then

AB = W |AB| = W |A||B| = UV |A||B| = UV PQ

and

ÃB = |AB| 12W |AB| 12 = |A| 12 |B| 12UV |A| 12 |B| 12

= |A| 12U |A| 12 |B| 12V |B| 12 = ÃB̃ = B̃Ã.

(Indeed, Ã and B̃ doubly commute.)
The operation of taking Aluthge transforms preserves the spectrum, the

ascent and the descent of the operator [2,4]. Hence, an operator and its Aluthge
transform have the same poles. Observe that for an operator A ∈ B(H) with

polar decomposition A = UP , An = UP
1
2 Ãn−1P

1
2 . Hence, A is an n- nilpotent,

n > 1, if and only if Ã is (n− 1)-nilpotent.
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3. Results

Recall from [6, Theorem 3.1] that if the operators C,D ∈ B(H), (as always,
non-trivial) are such that [C,D] = 0, ∥CD∥ = ∥C∥∥D∥, σ(CD) = σ(C)σ(D)
and CD ∈ (G− n− P ), then there exists a decomposition H = H1 ⊕H2 of H,
and decompositions C = C1 ⊕ C2 and D = D1 ⊕ D2 of C and D, such that
[C1, D1] = 0, 1

∥D∥D1 (or, 1
∥C∥C1) is unitary, 1

∥C∥C1 (resp., 1
∥D∥D1) is normal,

[C2, D2] = 0, D2 (or, C2) is quasinilpotent and C2D2 = 0. Here, if both the
components C2 and D2 are absent (i.e., act on the 0 space), then 1

∥C∥C and
1

∥D∥D are unitaries; if, instead, one of the components C2 and D2 is missing

then the other component is the 0 operator. Replacing operators C, D and CD
by Ã, B̃ and ÃB̃, respectively, this gives us information about the structure
of the operators Ã and B̃, and hence possibly operators A and B. What if

we replace C,D and CD by Ã, B̃ and ÃB? The following theorem, our main
result, considers this situation.

Theorem 3.1. Given non-trivial doubly commuting operators A,B ∈ B(H)
satisfying

σ(AB) = σ(A)σ(B) and ∥A∥∥B∥ ≤
∥∥∥ÃB

∥∥∥ ,
ÃB ∈ (G − n − P ) if and only if there exist decompositions H = H0 ⊕ H1 =

H0 ⊕ (H00 ⊕Hu) such that A =
∥∥∥Ã∥∥∥ (A00 ⊕ (A0 ⊕Au)) ∈ B(H0 ⊕ (H00 ⊕Hu))

and B =
∥∥∥B̃∥∥∥ (B0 ⊕Bu) ∈ B(H0 ⊕H1), where A00B0 and A0 are 2-nilpotents,

Au and Bu are unitaries, A∗n
u = Au and B∗n

u = Bu. Here, either of the
components A0, B0 and A00 may be missing (i.e., act on the 0 space).

Proof. The proof of the theorem consists of two parts: in the first part we
determine the structure of the Aluthge transforms Ã and B̃, and in the second
part we translate this into what it means for the operators A and B.

The doubly commutative hypothesis on A,B implies

ÃB = ÃB̃,
[
Ã, B̃

]
=

[
Ã, B̃∗

]
= 0.

The hypothesis ÃB ∈ (G − n − P ) implies ÃB is normal and σ
(
ÃB

)
⊆

{0} ∪
{

n+1
√
1
}
and (since Aluthge transforms preserve spectrum)

r
(
ÃB

)
=

∥∥∥ÃB∥∥∥ =
∥∥∥ÃB̃

∥∥∥ = 1 = r(AB).

Since ∥∥∥Ã∥∥∥ =
∥∥∥P 1

2UP
1
2

∥∥∥ ≤ ∥PUP∥ 1
2 ≤ ∥A∥

and similarly
∥∥∥B̃∥∥∥ ≤ ∥B∥, the hypothesis ∥A∥∥B∥ ≤

∥∥∥ÃB
∥∥∥ implies

1 =
∥∥∥ÃB

∥∥∥ =
∥∥∥ÃB̃

∥∥∥ ≤
∥∥∥Ã∥∥∥ ∥∥∥B̃∥∥∥ ≤ ∥A∥∥B∥ ≤

∥∥∥ÃB
∥∥∥ ,
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i.e., ∥∥∥ÃB
∥∥∥ =

∥∥∥Ã∥∥∥∥∥∥B̃∥∥∥ = ∥A∥∥B∥ = 1.

Define contractions E,F ∈ B(H) by

E = αÃ, F = βB̃; α =
1∥∥∥Ã∥∥∥ , β =

1∥∥∥B̃∥∥∥ , αβ = 1.

Then

[E,F ] = 0, ∥EF∥ = 1 = ∥E∥∥F∥ and σ(EF ) = σ(E)σ(F ).

The hypothesis ÃB ∈ (G− n− P ) implies EF ∈ (G− n− P ), hence

σ(EF )) ⊆ {0} ∪
{

n+1
√
1
}
,

and σ(E), σ(F ) are subsets of the set {0} ∪
{

n+1
√
1
}
. We have the following

four possibilities:

(a) σ(E) = S1 = ∪k
i=1{λi} ⊆ { n+1

√
1} and σ(F ) = S2 = ∪t

j=1{µj} ⊆
{n+1

√
1}, |λi| = |µj | = 1 for all 1 ≤ i ≤ k ≤ n+1 and 1 ≤ j ≤ t ≤ n+1;

(b) σ(E) = {0} ∪ S1 and σ(F ) = S2;
(c) σ(E) = S1 and σ(F ) = {0} ∪ S2;
(d) σ(E) = {0} ∪ S1 and σ(F ) = {0} ∪ S2.

If (a) holds, then ∥E∥ = r(E) = 1 = r(F ) = ∥F∥, E and F are normaloid
operators with spectrum consisting of the peripheral spectrum. Hence, see
[8, Proposition 54.2],

asc(E − λiI) ≤ 1, asc(F − µjI) ≤ 1, β(E − λiI) > 0 and β(F − µjI) > 0

for all 1 ≤ i ≤ k and 1 ≤ j ≤ t. E∗ and F ∗ being contractions, λi and µj

are eigenvalues of E∗ and F ∗ respectively. The eigenvalues in the peripheral
spectrum of a contraction being normal eigenvalues of the contraction, λi and
µj are simple (i.e., mulptiplicity one) eigenvalues of E and F respectively.
Furthermore,

E = ⊕k
i=1λiI|Hλi

= ⊕k
i=1Ei and F = ⊕t

j=1µjI|Hµj
= ⊕t

j=1Fj ,

where Hλi
= (E − λiI)

−1(0) and Hµj
= (F − µjI)

−1(0) for all 1 ≤ i ≤ k and

1 ≤ j ≤ t. Thus E and F are unitaries such that Ã = αE and B̃ = βF ; scalars
α and β defined as above.

If (b) holds, then an argument similar to the one above implies

E = E0 ⊕ λiI|Hλi
= ⊕k

i=0Ei and F = ⊕t
j=1µjI|Hµj

= ⊕t
j=1Fj ,

where σ(E0) = {0} (thus, E0 is a quasinilpotent operator in B(H0) = B (H⊖
⊕k

i=1Hλi

)
). The eigenvalues λi and µj are simple, normal eigenvalues. Let

F ∈ B
(
H0 ⊕k

i=1 Hλi

)
have the matrix representation F = [Fij ]

k
i,j=0. The

commutativity E and F then implies

EiFij − FijEj = (λi − λj)Fij = 0, 0 ≤ i, j ≤ k.
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Since λi ̸= λj for all i ̸= j, Fij = 0 for all 0 ≤ i ̸= j ≤ k and

F = ⊕k
i=0Fii, Fii unitary for all 0 ≤ i ≤ k.

The operator E0 being quasinilpotent, E0F00 is quasinilpotent; the normality
of EF implies that E0F00 = 0, and this in view of the fact that F00 is unitary
implies E0 = 0. In conclusion,

E = 0⊕k
i=1 Ei, F = ⊕k

i=0Fii; F00, Ei and Fii unitary for all 1 ≤ i ≤ k.

The case in which (c) holds is similarly dealt with: we have

E = ⊕t
j=0Ejj , F = 0⊕t

j=1 Fj ; E00, Ejj and Fj unitary for all 1 ≤ j ≤ t.

This brings us to case (d). If (d) holds, then

E = E0 ⊕k
i=1 λiI|Hλi

= ⊕k
i=0Ei, F = F0 ⊕t

j=1 µj |HµjI
= ⊕t

j=0Fj ,

where E0 and F0 are quasinilpotents. Letting E ∈ B
(
⊕t

j=0Hµj

)
have the

matrix representation E = [Eij ]
t
i,j=0, it is seen that Eij = 0 for all 0 ≤ i ̸= j ≤ t

and E = ⊕t
i=0Eii. The operator F0 being quasinilpotent, the commutativity

of E,F taken along with the normality of EF (hence, E00F0) implies

E00F0 = 0 = [E00, F0].

Furthermore, if 0 ∈ σ(Eii) for some 1 ≤ i ≤ t, then Eii is a direct sum
Eii = L0⊕L1 ∈ B

(
E−1

ii (0)⊕ (Hµi
⊖ E−1

ii (0))
)
of a quasinilpotent operator L0

and a unitary operator L1; since EiiFi is normal (because EF is), L0 is the 0
operator and Eii = 0⊕ L1. Thus we conclude:

E = E00 ⊕ (0⊕ Eu)

for some unitary Eu with σ(Eu) = S1.
To conclude what the above translates into for operators A and B, we start

by proving that αA and βB are contractions. (Recall: α = 1

∥Ã∥ , β = 1

∥B̃∥ and

αβ = 1.) As seen above ∥A∥∥B∥ =
∥∥∥Ã∥∥∥∥∥∥B̃∥∥∥; hence ∥αA∥∥βB∥ = 1. Since

Aluthge transforms preserve spectrum, σ(αA) = σ(αÃ) ⊆ {0}∪S1 ⊆ {0}∪∂(D)
and σ(βB) = σ(βB̃) = {0} ∪ S2 ⊆ {0} ∪ ∂(D). Consequently,

r(αA) = r(βB) = 1.

If αA and βB are normaloid, then there is nothing to prove. So assume one

of them, say αA, has norm 1. (Observe that ∥A∥∥B∥ =
∥∥∥Ã∥∥∥∥∥∥B̃∥∥∥ rules out

both αA and αB having norm greater than one.) Then ∥A∥ =
∥∥∥Ã∥∥∥, and hence

∥A∥∥B∥ =
∥∥∥Ã∥∥∥ ∥∥∥B̃∥∥∥ forces ∥B∥ =

∥∥∥B̃∥∥∥ and ∥βB∥ =
∥∥∥βB̃∥∥∥ = 1.

Aluthge transforms preserve both the ascent and the descent at non-zero
points of the spectrum of an operator [2, 4]. Hence all non-zero points of the
spectrum of αA and βB are poles (of the resolvent), and therefore eigenvalues,
of the operators. Since all these eigenvalues lie in ∂(D), and the operators



1562 B. P. DUGGAL AND I. H. KIM

are contractions, all non-zero points of the spectra of αA and βB are normal
eigenvalues of the operators. In conclusion,

A = α
(
A0 ⊕k

i=1 λiIi
)
and B = β

(
B0 ⊕t

j=1 µjIj
)
,

where Ii = I|(αA−λiI)−1(0), Ij = I|(βB−µjI)−1(0) and the operators A0, B0 are
quasinilpotent. For the cases (a) to (d) this translates into the following.

(a) If σ(A) = σ
(
Ã
)
=

∥∥∥Ã∥∥∥S1 and σ(B) = σ
(
B̃
)
=

∥∥∥B̃∥∥∥S2, then

A =
∥∥∥Ã∥∥∥ (⊕k

i=1λiIi
)
=

∥∥∥Ã∥∥∥Au and B =
∥∥∥B̃∥∥∥ (⊕t

j=1µjIj
)
=

∥∥∥B̃∥∥∥Bu.

Since Ã =
∥∥∥Ã∥∥∥Au =

∥∥∥Ã∥∥∥E and B̃ =
∥∥∥B̃∥∥∥Bu =

∥∥∥B̃∥∥∥F , the unitaries Au and

Bu satisfy Au = E and Bu = F . Evidently, AB ∈ (G− n− P ).

(b) and (c) If σ(A) = σ
(
Ã
)
=

∥∥∥Ã∥∥∥S1 and σ(B) = σ
(
B̃
)
=

∥∥∥B̃∥∥∥S2, then

A =
∥∥∥Ã∥∥∥ (A0 ⊕k

i=1 λiIi) =
∥∥∥Ã∥∥∥ (A0 ⊕Au)

and

B =
∥∥∥B̃∥∥∥ (⊕t

j=1µjIj) =
∥∥∥B̃∥∥∥Bu

(with respect to H =
(
H⊖k

i=1 (αA− λiI)
−1(0)

)
⊕k

i=1 (αA− λiI)
−1(0)), where

A0 is quasinilpotent. Since

(̃αA) = α
(
Ã0 ⊕Au

)
= E = 0⊕k

i=1 Ei and βBu = F = ⊕k
i=0Fii,

the operator A0 is 2-nilpotent. A similar argument shows that if σ(A) =

σ
(
Ã
)
=

∥∥∥Ã∥∥∥S1 and σ(B) = σ
(
B̃
)
=

∥∥∥B̃∥∥∥S2, then

A =
∥∥∥Ã∥∥∥ (⊕t

j=0Ejj

)
=

∥∥∥Ã∥∥∥Au and B =
∥∥∥B̃∥∥∥ (B0 ⊕t

j=1 Fj

)
=

∥∥∥B̃∥∥∥ (B0 ⊕Bu),

where B0 is 2-nilpotent and Au, Bu are unitary. (Evidently, AB /∈ (G−n−P )
in either of the cases, unless A0, respectively B0, is the 0 operator.)

(d) Finally, if (σ(A) = σ(Ã) = ∥Ã∥S1 and) σ(B) = σ(B̃) = ∥B̃∥S2, then

B = ∥B̃∥(B0 ⊕Bu), σ(B0) = {0} and Bu = ⊕µjIj = ⊕t
j=1Bj unitary. Letting

αA have the matrix representation [Aij ]
t
i,j=0 with respect to the decomposition

of H enforced by B0 ⊕Bu, the commutative property of A and B implies

AijBj = BiAij , 0 ≤ i, j ≤ t.

Hence, since Bi −Bj = (µiIi − µjIj) for all i ̸= j, and the operators (Bi −B0)
for i ̸= 0 and (B0 − Bj) for j ̸= 0 are invertible, Aij = 0 for all 0 ≤ i ̸= j ≤ t.
Consequently

A =
∥∥∥Ã∥∥∥ (⊕t

j=0Ajj

)
, [A00, B0] = 0 and A00B0 is quasinilpotent.
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Furthermore, if 0 ∈ σ
(
⊕t

j=1Ajj

)
, then ⊕t

j=1Ajj = A0 ⊕ Au, where A0 is
quasinilpotent and Au is unitary. Thus we conclude:

A =
∥∥∥Ã∥∥∥ (A00 ⊕ (A0 ⊕Au)) and B̃ =

∥∥∥B̃∥∥∥ (B0 ⊕Bu).

Taking Aluthge transforms

Ã =
∥∥∥Ã∥∥∥(Ã00 ⊕

(
Ã0 ⊕Au

))
and B =

∥∥∥B̃∥∥∥(B̃0 ⊕Bu

)
.

Since Ã, B̃ doubly commute and ÃB̃ is normal,

Ã00B̃0 = 0 ⇐⇒ A00B0 is 2− nilpotent.

To determine Ã0, let Bu have the matrix representation [Bij ]
2
i,j=1 (with respect

to the decomposition enforced by Ã0 ⊕Au). Then

Ã0B12 = B12Au and Ã0
∗
B12 = B12A

∗
u;

AuB21 = B21Ã0 and A∗
uB21 = B21Ã0

∗
.

This implies B12 = B21 = 0 and hence (by the normality of Ã0B11 and the fact

that σ
(
Ã0

)
= {0})

Ã0B11 = 0 ⇐⇒ Ã0 = 0 ⇐⇒ A0 is 2-nilpotent.

Summarising, if (d) holds, then

A =
∥∥∥Ã∥∥∥ (A00 ⊕ (A0 ⊕Au)) and B =

∥∥∥B̃∥∥∥ (B0 ⊕Bu),

where Au, Bu are unitary, [A00, B0] = 0, and A00B0 and A0 are 2-nilpotent.
(Here, as pointed out in the statement of the theorem, either of the components
may be absent.)

To complete the proof of the theorem, we prove that if A,B are as in the

general case (d) above, then ÃB ∈ (G− n− P ). We have

ÃB = ÃB̃ =
∥∥∥Ã∥∥∥∥∥∥B̃∥∥∥(Ã00B̃0 ⊕

(
Ã0 ⊕Au

)
Bu

)
= Ã00B0 ⊕

(
Ã0 ⊕Au

)
Bu,

where Ã00B0 = Ã0 = 0 (since A00B0 and A0 are 2-nilpotent). Thus

ÃB = 0⊕ (0⊕Au)Bu, Au and Bu unitary.

A straightforward computation (similar to our earlier ones) using the commu-
tativity of 0 ⊕ Au and Bu shows that (0 ⊕ Au)Bu = (0 ⊕ Au)(Bu1 ⊕ Bu2) =
0⊕AuBu2; Bu1 and Bu2 unitaries. Hence

ÃB
∗n

= 0⊕ (0⊕A∗n
u B∗n

u2 )

= 0⊕ (0⊕AuBu2) = ÃB,

since A∗n
u = Au and B∗n

u2 = Bu2. □
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Remark 3.2. There is nothing sacrosanct about our choice of the operator

B to have the representation B =
∥∥∥B̃∥∥∥ (B00 ⊕ Bu). We could have chosen

A =
∥∥∥Ã∥∥∥ (A00⊕Au), which would have then forced B =

∥∥∥B̃∥∥∥ (B00⊕(B0⊕Bu)).

The hypotheses of the theorem are not sufficient to guarantee the normality,
much less the property of being (G − n − P ), of either of the operator A, B,

AB, Ã and B̃. Indeed, if 0 ∈ σ(A) ∩ σ(B), then AB ∈ (G − n − P ), hence is
normal, if and only if A0 = A00B0 = 0. A necessary and sufficient condition
for suitable multiples of Ã, B̃, A and B to be (G − n − P ) may be given as
follows.

For a Banach space operator T ∈ B(X ) with a spectral set σ, let Pσ denote
the spectral projection associated with σ [8, p. 204]. The operator T is said to
be spectrally normaloid if T |Pσ(X ) is normaloid for every spectral set σ of σ(T )
[8, p. 227]. The proof of Theorem 3.1 implies the following corollary.

Corollary 3.3. A necessary and sufficient condition for the operators αÃ,
αA, βB̃ and βB of Theorem 3.1 to be (G− n− P ) is that A,B are spectrally
normaloid at 0.

The spectrally normaloid at 0 hypothesis of the theorem ensures that the
quasinilpotent parts of the operators A,B, Ã and B̃ are the 0 operator. We
observe here that the spectrally normaloid property at 0 for A (resp., B) is
vacuously satisfied if 0 /∈ σ(A) (resp., 0 /∈ σ(B)).

A particular case of Theorem 3.1, where a number of the hypotheses of the
theorem are inbuilt into the operators being considered, is that of the tensor
products of operators satisfying the (G− n− P ) property.

Let H⊗̄H denote the completion, endowed with a reasonable uniform cross
norm, of the algebraic tensor product H ⊗ H. For S, T ∈ B(H), let S ⊗ T ∈
B(H⊗̄H) denote the tensor product of S and T . Define operators A,B ∈
B(H⊗̄H) by A = S ⊗ I and B = I ⊗ T , and let S, T,A,B have the polar
decompositions

S = U1|S|, T = V1|T |, A = UP and B = V Q.

Then A and B doubly commute,

UP = (U1 ⊗ I)(|S| ⊗ I), V Q = (I ⊗ V1)(I ⊗ |T ),

Ã = P
1
2UP

1
2 =

(
|S| 12 ⊗ I

)
(U1 ⊗ I)

(
|S| 12 ⊗ I

)
,

B̃ = Q
1
2V PQ

1

2
=

(
I ⊗ |T | 12

)
(I ⊗ V1)

(
I ⊗ |T | 12

)
and

ÃB = ÃB̃ = B̃Ã =
(
|S| 12 ⊗ |T | 12

)
(U1 ⊗ V1)

(
|S| 12 ⊗ |T | 12

)
.

Furthermore, ∥∥∥ÃB
∥∥∥ =

∥∥∥Ã∥∥∥∥∥∥B̃∥∥∥ ,
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σ
(
ÃB

)
= σ

(
S̃ ⊗ T̃

)
= σ

(
S̃
)
σ
(
T̃
)
= σ

(
Ã
)
σ
(
B̃
)

= σ(S)σ(T ) = σ(A)σ(B).

Evidently,

Ã ∈ (G− n− P ) ⇐⇒ S̃ ∈ (G− n− P ),

B̃ ∈ (G− n− P ) ⇐⇒ T̃ ∈ (G− n− P ) and

ÃB ∈ (G− n− P ) ⇐⇒ S̃T̃ ∈ (G− n− P ).

Combining this information, we have:

Corollary 3.4. Given operators S, T ∈ B(H), if S̃ ⊗ T ∈ (G − n − P ) and

∥S ⊗ T∥ ≤
∥∥∥S̃ ⊗ T

∥∥∥, then S

∥S̃∥ ,
T

∥T̃∥ ∈ (G − n − P ) if and only if S, T are

spectrally normaloid at 0.

The extension of Corollary 3.4 to the Hilbert-Schmidt class B(C2(H)) is
almost automatic for the reason that the tensor product S ⊗ T can be identi-
fied with the restriction ES,T∗ |B(C2(H)) of the elementary operator ES,T∗(X) =
SXT ∗, X ∈ B(C2(H)) [3].

Corollary 3.5. Given operators S, T ∈ B(H) such that
∥∥∥S̃ ⊗ T

∥∥∥ ≤ ∥S ⊗ T∥
and ES̃,T̃∗ ∈ (G− n− P ), S

∥S̃∥ and T

∥T̃∥ are G− n− P if and only if S and T

are spectrally normaloid at 0.
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