OPERATORS A, B FOR WHICH THE ALUTHGE TRANSFORM $\widetilde{A B}$ IS A GENERALISED n-PROJECTION

Bhagwati P. Dugqal and In Hyoun Kim

Abstract

A Hilbert space operator $A \in \mathcal{B}(H)$ is a generalised n-projection, denoted $A \in(G-n-P)$, if $A^{* n}=A$. $(G-n-P)$-operators A are normal operators with finitely countable spectra $\sigma(A)$, subsets of the set $\{0\} \cup\{\sqrt[n+1]{1}\}$. The Aluthge transform \tilde{A} of $A \in \mathcal{B}(H)$ may be $(G-n-P)$ without A being $(G-n-P)$. For doubly commuting operators $A, B \in \mathcal{B}(H)$ such that $\sigma(A B)=\sigma(A) \sigma(B)$ and $\|A\|\|B\| \leq\|\widetilde{A B}\|$, $\widetilde{A B} \in(G-n-P)$ if and only if $A=\|\tilde{A}\|\left(A_{00} \oplus\left(A_{0} \oplus A_{u}\right)\right)$ and $B=\|\tilde{B}\|\left(B_{0} \oplus B_{u}\right)$, where A_{00} and B_{0}, and $A_{0} \oplus A_{u}$ and B_{u}, doubly commute, $A_{00} B_{0}$ and A_{0} are 2 nilpotent, A_{u} and B_{u} are unitaries, $A_{u}^{* n}=A_{u}$ and $B_{u}^{* n}=B_{u}$. Furthermore, a necessary and sufficient condition for the operators $\alpha A, \beta B, \alpha \tilde{A}$ and $\beta \tilde{B}, \alpha=\frac{1}{\|\tilde{A}\|}$ and $\beta=\frac{1}{\|\tilde{B}\|}$, to be $(G-n-P)$ is that A and B are spectrally normaloid at 0 .

1. Introduction

Let $\mathcal{B}(H)$ denote the algebra of operators, i.e., bounded linear transformations, on an infinite dimensional complex Hilbert space \mathcal{H} into itself. An operator $A \in \mathcal{B}(H)$, with adjoint A^{*}, is a generalised n-projection, denoted $A \in(G-n-P)$, if $A^{* n}=A$. Ever since the introduction of the concept of a generalised 2-projection on a finite dimensional Hilbert space by Gross and Trenkler [7], generalised n-projections have been studied by a number of authors, amongst them Baksalary and Liu [1], Du and Li [5], Lebtahi and Thome [9], and Duggal and Kim [6]. It is immediate from the definition that $(G-n-P)$-operators A are normal with spectra $\sigma(A)$, subsets of the set $\{0\} \cup\{\sqrt[n+1]{1}\}$.

[^0]Given a commuting pair of operators $A, B \in \mathcal{B}(H)$ such that $A, B \in(G-$ $n-P)$, it is straightforward to see that $A B \in(G-n-P)$. The reverse implication: does A, B commute and $A B \in(G-n-P)$ imply A and B, or a multiple thereof, in $(G-n-P)$ was considered in [6], where it is shown that if $\|A B\|=\|A\|\|B\|$ and $\sigma(A), \sigma(B)$ are finitely countable, then there exist direct sum decompositions $\frac{A}{\|A\|}=E_{1} \oplus E_{2}$ and $\frac{B}{\|B\|}=F_{1} \oplus F_{2}$ such that $E_{i} F_{i}=F_{i} E_{i}$ $(i=1,2), E_{1}$ (or, F_{1}) is unitary and F_{1} (respectively, E_{1}) is normal, E_{2} (or, F_{2}) is quasinilpotent and $E_{2} F_{2}=0$. The Aluthge transform of an operator $A \in \mathcal{B}(H)$ with polar decomposition $A=U P$ is the operator $\tilde{A}=P^{\frac{1}{2}} U P^{\frac{1}{2}}$. Evidently, $A \in(G-n-P)$ implies $\tilde{A} \in(G-n-P)$. The converse fails. Thus, if we let $A=A_{1} \oplus A_{2} \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H}), A_{1}^{* n}=A_{1}$ and $A_{2}^{2}=0$, then A is not normal, hence it can not be $(G-n-P)$ for any value of n. However, if A_{2} has the polar decomposition $A_{2}=U_{2} P_{2}$, then, since $A_{2}^{2}=U_{2} P_{2}^{\frac{1}{2}}\left[P_{2}^{\frac{1}{2}} U_{2} P_{2}^{\frac{1}{2}}\right] P_{2}^{\frac{1}{2}}=0$ if and only if $\tilde{A}_{2}=0, \tilde{A}=\tilde{A}_{1} \oplus \tilde{A}_{2}=\tilde{A}_{1} \oplus 0 \in(G-n-P)$.

Given operators $A, B \in \mathcal{B}(H)$ such that the Aluthge transform $\widetilde{A B}$ of $A B$ is $(G-n-P)$, we consider in the following the problem of determining the structure of the operators A, B, \tilde{A} and \tilde{B}. For this, an important first step is the ensuring of a reasonable relationship between the polar forms of $\widetilde{A B}$ and (the Aluthge transforms) \tilde{A}, \tilde{B} of A, B, respectively. In general, there is little relationship between the product of the Aluthge transforms of A and B and the Aluthge transform of the product $A B$. For example, if $A, B \in \mathcal{B}(H)$ are defined by $A x=\left(0, \frac{1}{2} x_{1}, 2 x_{2}, \frac{1}{2} x_{3}, 2 x_{4}, \ldots\right)$ and $B x=\left(0, a_{1} x_{1}, a_{2} x_{2}, a_{3} x_{3}, \ldots\right)$, where $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \mathcal{H}$ and $a_{j}=e^{i \theta_{j}}\left|a_{j}\right|$, then $\tilde{A} x=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$, $\tilde{B} x=\left(0, e^{i \theta_{1}}\left|a_{1} a_{2}\right| x_{1}, e^{i \theta_{2}}\left|a_{2} a_{3}\right| x_{2}, \ldots\right)$ and $\widetilde{A B} \neq \tilde{A} \tilde{B} \neq \tilde{B} \tilde{A}$. A simple commutativity hypothesis on A and B is not enough: what one needs here is the double commutativity hypothesis $A B-B A=A B^{*}-B^{*} A=0$. Such a doubly commutative hypothesis ensures that if A, B have the polar forms $A=U P$ and $B=V Q$, then $\widetilde{A B}=\tilde{A} \tilde{B}=\tilde{B} \tilde{A}$. We prove that if A, B doubly commute, the spectrum of $A B$ is the product of the spectra of A and B and $\|A\|\|B\| \leq\|\overline{A B}\|$, then $\widetilde{A B} \in(G-n-P)$ if and only if there exist decompositions $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}=$ $\mathcal{H}_{0} \oplus\left(\mathcal{H}_{00} \oplus \mathcal{H}_{u}\right)$ such that $A=\|\tilde{A}\|\left(A_{00} \oplus\left(A_{0} \oplus A_{u}\right)\right) \in B\left(\mathcal{H}_{0} \oplus\left(\mathcal{H}_{00} \oplus \mathcal{H}_{u}\right)\right)$ and $B=\|\tilde{B}\|\left(B_{0} \oplus B_{u}\right) \in B\left(\mathcal{H}_{0} \oplus \mathcal{H}_{1}\right)$, where $A_{00} B_{0}$ and A_{0} are 2-nilpotents, A_{u} and B_{u} are unitaries, $A_{u}^{* n}=A_{u}$ and $B_{u}^{* n}=B_{u}$. (Here, either of the components A_{0}, B_{0} and A_{00} may be missing, i.e., act on the 0 space.) It is seen that a necessary and sufficient condition for the operators $\alpha A, \beta B, \alpha \tilde{A}$ and $\beta \tilde{B}, \alpha=\frac{1}{\|\tilde{A}\|}$ and $\beta=\frac{1}{\|\tilde{B}\|}$, to be $(G-n-P)$ is that A and B are spectrally normaloid at 0 . Tensor products $A \otimes B$ such that $\widetilde{A \otimes B} \in(G-n-P)$ are considered.

In the following, we shall denote the commutator $A B-B A$ of A and B by $[A, B]$. The spectrum, the approximate point spectrum, the surjectivity spectrum, the spectral radius $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{\frac{1}{n}}$ and the peripheral spectrum $\{\lambda \in$ $\sigma(A):|\lambda|=r(A)\}\left[8\right.$, p. 225] will be denoted by $\sigma(A), \sigma_{a}(A), \sigma_{s}(A), r(A)$ and $\sigma_{\pi}(A)$, respectively. Recall that the isolated points of the spectrum of a normal operator are (poles of the resolvent of the operator, hence) reducing eigenvalues of the operator.

2. Preliminaries

We start by recalling some facts from $[1,6,7,9]$. The hypothesis $A \in(G-$ $n-P)$, i.e., $A^{* n}=A$, implies

$$
A^{*} A=A^{* n+1}=A^{* n} A^{*}=A A^{*}, A^{* n+1}=\left(A^{*} A\right)=A^{n+1}
$$

hence A is normal and A^{n+1} is self-adjoint. Consequently,

$$
\sigma(A)=\sigma_{a}(A)=\sigma_{s}(A) \subseteq\{0\} \cup\{\sqrt[n+1]{1}\},\|A\|=1
$$

The spectrum of (the normal operator) A being a finite set consists of normal eigenvalues of A (i.e., the corresponding eigenspaces are reducing) and A has a direct sum representation of type

$$
A=\left.\left.\bigoplus_{i=1}^{n+1} A\right|_{\mathcal{H}_{i}} \oplus A\right|_{\mathcal{H}_{0}}=\bigoplus_{i=1}^{n+1} \lambda_{i} I_{i} \oplus 0=\mathcal{A}_{1} \oplus 0
$$

where $\mathcal{H}_{i}=\left(A-\lambda_{i} I\right)^{-1}(0), \lambda_{0}=0, \lambda_{i}, 1 \leq i \leq n+1$, are the $(n+1)$ th roots of unity, I_{i} is the unity of $\mathcal{B}\left(\mathcal{H}_{i}\right)$ and the operator \mathcal{A}_{1} is unitary. (Here some of the components $\left.A\right|_{\mathcal{H}_{i}}, i=0,1, \ldots, n+1$, may be missing.)

If we let $(Q P),(P L)$ and (N) denote, respectively, the classes of operators $A \in \mathcal{B}(H)$ such that

$$
\begin{aligned}
A \in(Q P) & \Longleftrightarrow A^{n+2}=A \\
A \in(P L) & \left.\Longleftrightarrow A \text { is a partial isometry (i.e., } \mathrm{AA}^{*} \mathrm{~A}=\mathrm{A}\right) \text { and } \\
A \in(N) & \Longleftrightarrow\left[A, A^{*}\right]=0, \text { i.e., } \mathrm{A} \text { is normal, }
\end{aligned}
$$

then operators $A \in(G-n-P)$ have the following structural properties.
Proposition 2.1 ([6]). The following statements are mutually equivalent.
(i) $A \in(G-n-P)$.
(ii) $A \in(Q P) \wedge(P L) \wedge(N)$.
(iii) $A \in(Q P) \wedge(N)$.
(iv) $A \in(Q P) \wedge(P L)$.

The eigenvalues λ of a contraction operator $A \in \mathcal{B}(H)$ of length one (i.e., such that $|\lambda|=1$) are normal eigenvalues of the operator: if $(A-\lambda I) x=0$ for an $x \in \mathcal{H}$, then

$$
\left\|(A-\lambda I)^{*} x\right\|^{2} \leq\left\|A^{*} x\right\|^{2}-2\left\|A^{*} x\right\|\|\bar{\lambda} x\|+\|\bar{\lambda} x\|^{2} \leq 0
$$

The ascent (resp., descent) of $A \in \mathcal{B}(H)$, $\operatorname{asc}(A)$ (resp., $\operatorname{dsc}(A)$), is the least positive integer n such that $A^{n}(0)=A^{n+1}(0)\left(\right.$ resp., $A^{n}(\mathcal{H})=A^{n+1}(\mathcal{H})$); if no such integer n exists, then $\operatorname{asc}(A)=\infty$ (resp., $\operatorname{dsc}(A)=\infty)$. An isolated pointed λ of the spectrum of $A, \lambda \in \operatorname{iso}(A)$, is a pole (of the resolvent) of A of order m if $\operatorname{asc}(A-\lambda I)=\operatorname{dsc}(A-\lambda I)=m<\infty$. The deficiency indices $\alpha(A-\lambda I)$ and $\beta(A-\lambda I)$ are the integers $\alpha(A-\lambda I)=\operatorname{dim}(A-\lambda I)^{-1}(0)$ and $\beta(A-\lambda I)=\operatorname{dim}\left(A^{*}-\bar{\lambda} I\right)^{-1}(0)$. The operator A is normaloid if $r(A)=$ $\|A\|$. Recall from [8, Proposition 54.2] that if a non-trivial operator $A \in \mathcal{B}(H)$ is normaloid and $\lambda \in \sigma_{\pi}(A)$ (thus, $\left.|\lambda|=\|A\|\right)$, then $\operatorname{asc}(A-\lambda I) \leq 1$ and $\beta(A-\lambda I)>0$.

Given an operator $A \in \mathcal{B}(H)$ with polar decomposition $A=U P$, the Aluthge transform $\tilde{A}=P^{\frac{1}{2}} U P^{\frac{1}{2}}$ preserves, often improves upon, many spectral properties of the operator A. If the product $A B \in \mathcal{B}(H)$ of $A, B \in \mathcal{B}(H)$ has the polar form $A B=W|A B|$, then $\widetilde{A B}=|A B|^{\frac{1}{2}} W|A B|^{\frac{1}{2}}$. How is the Aluthge transform $\widetilde{A B}$ of the product $A B$ related to the product of the Aluthge transforms of A and B ? Ensuring a reasonable relationship requires the assumption of certain commutativity hypotheses on A and B. It is not enough to assume that $[A, B]=0$, and a more reasonable hypothesis here is that of doubly commutative. $A, B \in \mathcal{B}(H)$ doubly commute if $[A, B]=\left[A, B^{*}\right]=0$. If A, B doubly commute, and if B has the polar decomposition $B=V Q$, then a straightforward argument (depending almost entirely upon the facts that $\operatorname{ker} U=\operatorname{ker} P$, $\operatorname{ker} V=\operatorname{ker} Q$ and $\overline{P(\mathcal{H})} \oplus \operatorname{ker} P=\overline{Q(\mathcal{H})} \oplus \operatorname{ker} V=\mathcal{H})$ proves that

$$
[P, B]=\left[P, B^{*}\right]=[U, B]=\left[U, B^{*}\right]=[Q, A]=\left[Q, A^{*}\right]=[V, A]=\left[V^{*}, A\right]=0
$$

and hence that

$$
[P, Q]=[U, V]=[P, V]=[Q, U]=\left[U^{*}, V\right]=0
$$

Thus if $A B$ has the polar decomposition $A B=W|A B|$, see above, then

$$
A B=W|A B|=W|A||B|=U V|A||B|=U V P Q
$$

and

$$
\begin{aligned}
\widetilde{A B} & =|A B|^{\frac{1}{2}} W|A B|^{\frac{1}{2}}=|A|^{\frac{1}{2}}|B|^{\frac{1}{2}} U V|A|^{\frac{1}{2}}|B|^{\frac{1}{2}} \\
& =|A|^{\frac{1}{2}} U|A|^{\frac{1}{2}}|B|^{\frac{1}{2}} V|B|^{\frac{1}{2}}=\tilde{A} \tilde{B}=\tilde{B} \tilde{A} .
\end{aligned}
$$

(Indeed, \tilde{A} and \tilde{B} doubly commute.)
The operation of taking Aluthge transforms preserves the spectrum, the ascent and the descent of the operator [2,4]. Hence, an operator and its Aluthge transform have the same poles. Observe that for an operator $A \in \mathcal{B}(H)$ with polar decomposition $A=U P, A^{n}=U P^{\frac{1}{2}} \tilde{A}^{n-1} P^{\frac{1}{2}}$. Hence, A is an n - nilpotent, $n>1$, if and only if \tilde{A} is $(n-1)$-nilpotent.

3. Results

Recall from [6, Theorem 3.1] that if the operators $C, D \in \mathcal{B}(H)$, (as always, non-trivial) are such that $[C, D]=0,\|C D\|=\|C\|\|D\|, \sigma(C D)=\sigma(C) \sigma(D)$ and $C D \in(G-n-P)$, then there exists a decomposition $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ of \mathcal{H}, and decompositions $C=C_{1} \oplus C_{2}$ and $D=D_{1} \oplus D_{2}$ of C and D, such that $\left[C_{1}, D_{1}\right]=0, \frac{1}{\|D\|} D_{1}$ (or, $\frac{1}{\|C\|} C_{1}$) is unitary, $\frac{1}{\|C\|} C_{1}$ (resp., $\frac{1}{\|D\|} D_{1}$) is normal, $\left[C_{2}, D_{2}\right]=0, D_{2}$ (or, C_{2}) is quasinilpotent and $C_{2} D_{2}=0$. Here, if both the components C_{2} and D_{2} are absent (i.e., act on the 0 space), then $\frac{1}{\|C\|} C$ and $\frac{1}{\|D\|} D$ are unitaries; if, instead, one of the components C_{2} and D_{2} is missing then the other component is the 0 operator. Replacing operators C, D and $C D$ by \tilde{A}, \tilde{B} and $\tilde{A} \tilde{B}$, respectively, this gives us information about the structure of the operators \tilde{A} and \tilde{B}, and hence possibly operators A and B. What if we replace C, D and $C D$ by \tilde{A}, \tilde{B} and $\widetilde{A B}$? The following theorem, our main result, considers this situation.

Theorem 3.1. Given non-trivial doubly commuting operators $A, B \in \mathcal{B}(H)$ satisfying

$$
\sigma(A B)=\sigma(A) \sigma(B) \text { and }\|A\|\|B\| \leq\|\widetilde{A B}\|
$$

$\widetilde{A B} \in(G-n-P)$ if and only if there exist decompositions $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}=$ $\mathcal{H}_{0} \oplus\left(\mathcal{H}_{00} \oplus \mathcal{H}_{u}\right)$ such that $A=\|\tilde{A}\|\left(A_{00} \oplus\left(A_{0} \oplus A_{u}\right)\right) \in B\left(\mathcal{H}_{0} \oplus\left(\mathcal{H}_{00} \oplus \mathcal{H}_{u}\right)\right)$ and $B=\|\tilde{B}\|\left(B_{0} \oplus B_{u}\right) \in B\left(\mathcal{H}_{0} \oplus \mathcal{H}_{1}\right)$, where $A_{00} B_{0}$ and A_{0} are 2-nilpotents, A_{u} and B_{u} are unitaries, $A_{u}^{* n}=A_{u}$ and $B_{u}^{* n}=B_{u}$. Here, either of the components A_{0}, B_{0} and A_{00} may be missing (i.e., act on the 0 space).

Proof. The proof of the theorem consists of two parts: in the first part we determine the structure of the Aluthge transforms \tilde{A} and \tilde{B}, and in the second part we translate this into what it means for the operators A and B.

The doubly commutative hypothesis on A, B implies

$$
\widetilde{A B}=\tilde{A} \tilde{B},[\tilde{A}, \tilde{B}]=\left[\tilde{A}, \tilde{B}^{*}\right]=0
$$

The hypothesis $\widetilde{A B} \in(G-n-P)$ implies $\widetilde{A B}$ is normal and $\sigma(\widetilde{A B}) \subseteq$ $\{0\} \cup\{\sqrt[n+1]{1}\}$ and (since Aluthge transforms preserve spectrum)

$$
r(\widetilde{A B})=\|\widetilde{A B}\|=\|\tilde{A} \tilde{B}\|=1=r(A B)
$$

Since

$$
\|\tilde{A}\|=\left\|P^{\frac{1}{2}} U P^{\frac{1}{2}}\right\| \leq\|P U P\|^{\frac{1}{2}} \leq\|A\|
$$

and similarly $\|\tilde{B}\| \leq\|B\|$, the hypothesis $\|A\|\|B\| \leq\|\widetilde{A B}\|$ implies

$$
1=\|\widetilde{A B}\|=\|\tilde{A} \tilde{B}\| \leq\|\tilde{A}\|\|\tilde{B}\| \leq\|A\|\|B\| \leq\|\widetilde{A B}\|
$$

i.e.,

$$
\|\widetilde{A B}\|=\|\tilde{A}\|\|\tilde{B}\|=\|A\|\|B\|=1
$$

Define contractions $E, F \in \mathcal{B}(H)$ by

$$
E=\alpha \tilde{A}, F=\beta \tilde{B} ; \alpha=\frac{1}{\|\tilde{A}\|}, \beta=\frac{1}{\|\tilde{B}\|}, \alpha \beta=1
$$

Then

$$
[E, F]=0,\|E F\|=1=\|E\|\|F\| \text { and } \sigma(E F)=\sigma(E) \sigma(F)
$$

The hypothesis $\widetilde{A B} \in(G-n-P)$ implies $E F \in(G-n-P)$, hence

$$
\sigma(E F)) \subseteq\{0\} \cup\{\sqrt[n+1]{1}\}
$$

and $\sigma(E), \sigma(F)$ are subsets of the set $\{0\} \cup\{\sqrt[n+1]{1}\}$. We have the following four possibilities:
(a) $\sigma(E)=S_{1}=\cup_{i=1}^{k}\left\{\lambda_{i}\right\} \subseteq\{\sqrt[n+1]{1}\}$ and $\sigma(F)=S_{2}=\cup_{j=1}^{t}\left\{\mu_{j}\right\} \subseteq$ $\{\sqrt[n+1]{1}\},\left|\lambda_{i}\right|=\left|\mu_{j}\right|=1$ for all $1 \leq i \leq k \leq n+1$ and $1 \leq j \leq t \leq n+1 ;$
(b) $\sigma(E)=\{0\} \cup S_{1}$ and $\sigma(F)=S_{2}$;
(c) $\sigma(E)=S_{1}$ and $\sigma(F)=\{0\} \cup S_{2}$;
(d) $\sigma(E)=\{0\} \cup S_{1}$ and $\sigma(F)=\{0\} \cup S_{2}$.

If (a) holds, then $\|E\|=r(E)=1=r(F)=\|F\|, E$ and F are normaloid operators with spectrum consisting of the peripheral spectrum. Hence, see [8, Proposition 54.2],

$$
\operatorname{asc}\left(E-\lambda_{i} I\right) \leq 1, \operatorname{asc}\left(F-\mu_{j} I\right) \leq 1, \beta\left(E-\lambda_{i} I\right)>0 \text { and } \beta\left(F-\mu_{j} I\right)>0
$$

for all $1 \leq i \leq k$ and $1 \leq j \leq t$. E^{*} and F^{*} being contractions, $\overline{\lambda_{i}}$ and $\overline{\mu_{j}}$ are eigenvalues of E^{*} and F^{*} respectively. The eigenvalues in the peripheral spectrum of a contraction being normal eigenvalues of the contraction, λ_{i} and μ_{j} are simple (i.e., mulptiplicity one) eigenvalues of E and F respectively. Furthermore,

$$
E=\left.\oplus_{i=1}^{k} \lambda_{i} I\right|_{\mathcal{H}_{\lambda_{i}}}=\oplus_{i=1}^{k} E_{i} \text { and } F=\left.\oplus_{j=1}^{t} \mu_{j} I\right|_{\mathcal{H}_{\mu_{j}}}=\oplus_{j=1}^{t} F_{j}
$$

where $\mathcal{H}_{\lambda_{i}}=\left(E-\lambda_{i} I\right)^{-1}(0)$ and $\mathcal{H}_{\mu_{j}}=\left(F-\mu_{j} I\right)^{-1}(0)$ for all $1 \leq i \leq k$ and $1 \leq j \leq t$. Thus E and F are unitaries such that $\tilde{A}=\alpha E$ and $\tilde{B}=\beta F$; scalars α and β defined as above.

If (b) holds, then an argument similar to the one above implies

$$
E=\left.E_{0} \oplus \lambda_{i} I\right|_{\mathcal{H}_{\lambda_{i}}}=\oplus_{i=0}^{k} E_{i} \text { and } F=\left.\oplus_{j=1}^{t} \mu_{j} I\right|_{\mathcal{H}_{\mu_{j}}}=\oplus_{j=1}^{t} F_{j}
$$

where $\sigma\left(E_{0}\right)=\{0\}$ (thus, E_{0} is a quasinilpotent operator in $B\left(\mathcal{H}_{0}\right)=B(\mathcal{H} \ominus$ $\left.\oplus_{i=1}^{k} \mathcal{H}_{\lambda_{i}}\right)$). The eigenvalues λ_{i} and μ_{j} are simple, normal eigenvalues. Let $F \in B\left(\mathcal{H}_{0} \oplus_{i=1}^{k} \mathcal{H}_{\lambda_{i}}\right)$ have the matrix representation $F=\left[F_{i j}\right]_{i, j=0}^{k}$. The commutativity E and F then implies

$$
E_{i} F_{i j}-F_{i j} E_{j}=\left(\lambda_{i}-\lambda_{j}\right) F_{i j}=0,0 \leq i, j \leq k
$$

Since $\lambda_{i} \neq \lambda_{j}$ for all $i \neq j, F_{i j}=0$ for all $0 \leq i \neq j \leq k$ and

$$
F=\oplus_{i=0}^{k} F_{i i}, F_{i i} \text { unitary for all } 0 \leq i \leq k
$$

The operator E_{0} being quasinilpotent, $E_{0} F_{00}$ is quasinilpotent; the normality of $E F$ implies that $E_{0} F_{00}=0$, and this in view of the fact that F_{00} is unitary implies $E_{0}=0$. In conclusion,

$$
E=0 \oplus_{i=1}^{k} E_{i}, F=\oplus_{i=0}^{k} F_{i i} ; F_{00}, E_{i} \text { and } F_{i i} \text { unitary for all } 1 \leq i \leq k
$$

The case in which (c) holds is similarly dealt with: we have

$$
E=\oplus_{j=0}^{t} E_{j j}, F=0 \oplus_{j=1}^{t} F_{j} ; E_{00}, E_{j j} \text { and } F_{j} \text { unitary for all } 1 \leq j \leq t
$$

This brings us to case (d). If (d) holds, then

$$
E=\left.E_{0} \oplus_{i=1}^{k} \lambda_{i} I\right|_{\mathcal{H}_{\lambda_{i}}}=\oplus_{i=0}^{k} E_{i}, F=\left.F_{0} \oplus_{j=1}^{t} \mu_{j}\right|_{\mathcal{H}_{\mu_{j} I}}=\oplus_{j=0}^{t} F_{j},
$$

where E_{0} and F_{0} are quasinilpotents. Letting $E \in B\left(\oplus_{j=0}^{t} \mathcal{H}_{\mu_{j}}\right)$ have the matrix representation $E=\left[E_{i j}\right]_{i, j=0}^{t}$, it is seen that $E_{i j}=0$ for all $0 \leq i \neq j \leq t$ and $E=\oplus_{i=0}^{t} E_{i i}$. The operator F_{0} being quasinilpotent, the commutativity of E, F taken along with the normality of $E F$ (hence, $E_{00} F_{0}$) implies

$$
E_{00} F_{0}=0=\left[E_{00}, F_{0}\right] .
$$

Furthermore, if $0 \in \sigma\left(E_{i i}\right)$ for some $1 \leq i \leq t$, then $E_{i i}$ is a direct sum $E_{i i}=L_{0} \oplus L_{1} \in B\left(E_{i i}^{-1}(0) \oplus\left(H_{\mu_{i}} \ominus E_{i i}^{-1}(0)\right)\right)$ of a quasinilpotent operator L_{0} and a unitary operator L_{1}; since $E_{i i} F_{i}$ is normal (because $E F$ is), L_{0} is the 0 operator and $E_{i i}=0 \oplus L_{1}$. Thus we conclude:

$$
E=E_{00} \oplus\left(0 \oplus E_{u}\right)
$$

for some unitary E_{u} with $\sigma\left(E_{u}\right)=S_{1}$.
To conclude what the above translates into for operators A and B, we start by proving that αA and βB are contractions. (Recall: $\alpha=\frac{1}{\|\tilde{A}\|}, \beta=\frac{1}{\|\tilde{B}\|}$ and $\alpha \beta=1$.) As seen above $\|A\|\|B\|=\|\tilde{A}\|\|\tilde{B}\|$; hence $\|\alpha A\|\|\beta B\|=1$. Since Aluthge transforms preserve spectrum, $\sigma(\alpha A)=\sigma(\alpha \tilde{A}) \subseteq\{0\} \cup S_{1} \subseteq\{0\} \cup \partial(\mathbb{D})$ and $\sigma(\beta B)=\sigma(\beta \tilde{B})=\{0\} \cup S_{2} \subseteq\{0\} \cup \partial(\mathbb{D})$. Consequently,

$$
r(\alpha A)=r(\beta B)=1
$$

If αA and βB are normaloid, then there is nothing to prove. So assume one of them, say αA, has norm 1. (Observe that $\|A\|\|B\|=\|\tilde{A}\|\|\tilde{B}\|$ rules out both αA and αB having norm greater than one.) Then $\|A\|=\|\tilde{A}\|$, and hence $\|A\|\|B\|=\|\tilde{A}\|\|\tilde{B}\|$ forces $\|B\|=\|\tilde{B}\|$ and $\|\beta B\|=\|\beta \tilde{B}\|=1$.

Aluthge transforms preserve both the ascent and the descent at non-zero points of the spectrum of an operator $[2,4]$. Hence all non-zero points of the spectrum of αA and βB are poles (of the resolvent), and therefore eigenvalues, of the operators. Since all these eigenvalues lie in $\partial(\mathbb{D})$, and the operators
are contractions, all non-zero points of the spectra of αA and βB are normal eigenvalues of the operators. In conclusion,

$$
A=\alpha\left(A_{0} \oplus_{i=1}^{k} \lambda_{i} I_{i}\right) \text { and } B=\beta\left(B_{0} \oplus_{j=1}^{t} \mu_{j} \mathbf{I}_{j}\right)
$$

where $I_{i}=\left.I\right|_{\left(\alpha A-\lambda_{i} I\right)^{-1}(0)}, \mathbf{I}_{j}=\left.I\right|_{\left(\beta B-\mu_{j} I\right)^{-1}(0)}$ and the operators A_{0}, B_{0} are quasinilpotent. For the cases (a) to (d) this translates into the following.
(a) If $\sigma(A)=\sigma(\tilde{A})=\|\tilde{A}\| S_{1}$ and $\sigma(B)=\sigma(\tilde{B})=\|\tilde{B}\| S_{2}$, then

$$
A=\|\tilde{A}\|\left(\oplus_{i=1}^{k} \lambda_{i} I_{i}\right)=\|\tilde{A}\| A_{u} \text { and } B=\|\tilde{B}\|\left(\oplus_{j=1}^{t} \mu_{j} \mathbf{I}_{j}\right)=\|\tilde{B}\| B_{u}
$$

Since $\tilde{A}=\|\tilde{A}\| A_{u}=\|\tilde{A}\| E$ and $\tilde{B}=\|\tilde{B}\| B_{u}=\|\tilde{B}\| F$, the unitaries A_{u} and B_{u} satisfy $A_{u}=E$ and $B_{u}=F$. Evidently, $A B \in(G-n-P)$.
(b) and (c) If $\sigma(A)=\sigma(\tilde{A})=\|\tilde{A}\| S_{1}$ and $\sigma(B)=\sigma(\tilde{B})=\|\tilde{B}\| S_{2}$, then

$$
A=\|\tilde{A}\|\left(A_{0} \oplus_{i=1}^{k} \lambda_{i} I_{i}\right)=\|\tilde{A}\|\left(A_{0} \oplus A_{u}\right)
$$

and

$$
B=\|\tilde{B}\|\left(\oplus_{j=1}^{t} \mu_{j} \mathbf{I}_{j}\right)=\|\tilde{B}\| B_{u}
$$

(with respect to $\left.\mathcal{H}=\left(\mathcal{H} \ominus_{i=1}^{k}\left(\alpha A-\lambda_{i} I\right)^{-1}(0)\right) \oplus_{i=1}^{k}\left(\alpha A-\lambda_{i} I\right)^{-1}(0)\right)$, where A_{0} is quasinilpotent. Since

$$
\widetilde{(\alpha A)}=\alpha\left(\tilde{A}_{0} \oplus A_{u}\right)=E=0 \oplus_{i=1}^{k} E_{i} \text { and } \beta B_{u}=F=\oplus_{i=0}^{k} F_{i i}
$$

the operator A_{0} is 2-nilpotent. A similar argument shows that if $\sigma(A)=$ $\sigma(\tilde{A})=\|\tilde{A}\| S_{1}$ and $\sigma(B)=\sigma(\tilde{B})=\|\tilde{B}\| S_{2}$, then
$A=\|\tilde{A}\|\left(\oplus_{j=0}^{t} E_{j j}\right)=\|\tilde{A}\| A_{u}$ and $B=\|\tilde{B}\|\left(B_{0} \oplus_{j=1}^{t} F_{j}\right)=\|\tilde{B}\|\left(B_{0} \oplus B_{u}\right)$,
where B_{0} is 2-nilpotent and A_{u}, B_{u} are unitary. (Evidently, $A B \notin(G-n-P)$ in either of the cases, unless A_{0}, respectively B_{0}, is the 0 operator.)
(d) Finally, if $\left(\sigma(A)=\sigma(\tilde{A})=\|\tilde{A}\| S_{1}\right.$ and) $\sigma(B)=\sigma(\tilde{B})=\|\tilde{B}\| S_{2}$, then $B=\|\tilde{B}\|\left(B_{0} \oplus B_{u}\right), \sigma\left(B_{0}\right)=\{0\}$ and $B_{u}=\oplus \mu_{j} \mathbf{I}_{j}=\oplus_{j=1}^{t} B_{j}$ unitary. Letting αA have the matrix representation $\left[A_{i j}\right]_{i, j=0}^{t}$ with respect to the decomposition of \mathcal{H} enforced by $B_{0} \oplus B_{u}$, the commutative property of A and B implies

$$
A_{i j} B_{j}=B_{i} A_{i j}, 0 \leq i, j \leq t
$$

Hence, since $B_{i}-B_{j}=\left(\mu_{i} \mathbf{I}_{i}-\mu_{j} \mathbf{I}_{j}\right)$ for all $i \neq j$, and the operators $\left(B_{i}-B_{0}\right)$ for $i \neq 0$ and $\left(B_{0}-B_{j}\right)$ for $j \neq 0$ are invertible, $A_{i j}=0$ for all $0 \leq i \neq j \leq t$. Consequently

$$
A=\|\tilde{A}\|\left(\oplus_{j=0}^{t} A_{j j}\right),\left[A_{00}, B_{0}\right]=0 \text { and } A_{00} B_{0} \text { is quasinilpotent. }
$$

Furthermore, if $0 \in \sigma\left(\oplus_{j=1}^{t} A_{j j}\right)$, then $\oplus_{j=1}^{t} A_{j j}=A_{0} \oplus A_{u}$, where A_{0} is quasinilpotent and A_{u} is unitary. Thus we conclude:

$$
A=\|\tilde{A}\|\left(A_{00} \oplus\left(A_{0} \oplus A_{u}\right)\right) \text { and } \tilde{B}=\|\tilde{B}\|\left(B_{0} \oplus B_{u}\right)
$$

Taking Aluthge transforms

$$
\tilde{A}=\|\tilde{A}\|\left(\widetilde{A_{00}} \oplus\left(\tilde{A}_{0} \oplus A_{u}\right)\right) \text { and } B=\|\tilde{B}\|\left(\widetilde{B_{0}} \oplus B_{u}\right)
$$

Since \tilde{A}, \tilde{B} doubly commute and $\tilde{A} \tilde{B}$ is normal,

$$
\widetilde{A_{00}} \widetilde{B_{0}}=0 \Longleftrightarrow A_{00} B_{0} \text { is } 2-\text { nilpotent. }
$$

To determine \tilde{A}_{0}, let B_{u} have the matrix representation $\left[B_{i j}\right]_{i, j=1}^{2}$ (with respect to the decomposition enforced by $\tilde{A}_{0} \oplus A_{u}$). Then

$$
\begin{aligned}
& \tilde{A}_{0} B_{12}=B_{12} A_{u} \text { and } \tilde{A}_{0}^{*} B_{12}=B_{12} A_{u}^{*} \\
& A_{u} B_{21}=B_{21} \tilde{A}_{0} \text { and } A_{u}^{*} B_{21}=B_{21} \tilde{A}_{0}^{*}
\end{aligned}
$$

This implies $B_{12}=B_{21}=0$ and hence (by the normality of $\tilde{A}_{0} B_{11}$ and the fact that $\sigma\left(\tilde{A}_{0}\right)=\{0\}$)

$$
\tilde{A}_{0} B_{11}=0 \Longleftrightarrow \tilde{A}_{0}=0 \Longleftrightarrow A_{0} \text { is 2-nilpotent. }
$$

Summarising, if (d) holds, then

$$
A=\|\tilde{A}\|\left(A_{00} \oplus\left(A_{0} \oplus A_{u}\right)\right) \text { and } B=\|\tilde{B}\|\left(B_{0} \oplus B_{u}\right),
$$

where A_{u}, B_{u} are unitary, $\left[A_{00}, B_{0}\right]=0$, and $A_{00} B_{0}$ and A_{0} are 2-nilpotent. (Here, as pointed out in the statement of the theorem, either of the components may be absent.)

To complete the proof of the theorem, we prove that if A, B are as in the general case (d) above, then $\widetilde{A B} \in(G-n-P)$. We have

$$
\widetilde{A B}=\tilde{A} \tilde{B}=\|\tilde{A}\|\|\tilde{B}\|\left(\widetilde{A_{00}} \widetilde{B_{0}} \oplus\left(\widetilde{A_{0}} \oplus A_{u}\right) B_{u}\right)=\widetilde{A_{00} B_{0}} \oplus\left(\widetilde{A_{0}} \oplus A_{u}\right) B_{u}
$$

where $\widetilde{A_{00} B_{0}}=\widetilde{A_{0}}=0$ (since $A_{00} B_{0}$ and A_{0} are 2-nilpotent). Thus

$$
\widetilde{A B}=0 \oplus\left(0 \oplus A_{u}\right) B_{u}, A_{u} \text { and } B_{u} \text { unitary. }
$$

A straightforward computation (similar to our earlier ones) using the commutativity of $0 \oplus A_{u}$ and B_{u} shows that $\left(0 \oplus A_{u}\right) B_{u}=\left(0 \oplus A_{u}\right)\left(B_{u 1} \oplus B_{u 2}\right)=$ $0 \oplus A_{u} B_{u 2} ; B_{u 1}$ and $B_{u 2}$ unitaries. Hence

$$
\begin{aligned}
\widetilde{A B}^{* n} & =0 \oplus\left(0 \oplus A_{u}^{* n} B_{u 2}^{* n}\right) \\
& =0 \oplus\left(0 \oplus A_{u} B_{u 2}\right)=\widetilde{A B}
\end{aligned}
$$

since $A_{u}^{* n}=A_{u}$ and $B_{u 2}^{* n}=B_{u 2}$.

Remark 3.2. There is nothing sacrosanct about our choice of the operator B to have the representation $B=\|\tilde{B}\|\left(B_{00} \oplus B_{u}\right)$. We could have chosen $A=\|\tilde{A}\|\left(A_{00} \oplus A_{u}\right)$, which would have then forced $B=\|\tilde{B}\|\left(B_{00} \oplus\left(B_{0} \oplus B_{u}\right)\right)$.

The hypotheses of the theorem are not sufficient to guarantee the normality, much less the property of being $(G-n-P)$, of either of the operator A, B, $A B, \tilde{A}$ and \tilde{B}. Indeed, if $0 \in \sigma(A) \cap \sigma(B)$, then $A B \in(G-n-P)$, hence is normal, if and only if $A_{0}=A_{00} B_{0}=0$. A necessary and sufficient condition for suitable multiples of \tilde{A}, \tilde{B}, A and B to be $(G-n-P)$ may be given as follows.

For a Banach space operator $T \in B(\mathcal{X})$ with a spectral set σ, let P_{σ} denote the spectral projection associated with σ [8, p. 204]. The operator T is said to be spectrally normaloid if $\left.T\right|_{P_{\sigma}(\mathcal{X})}$ is normaloid for every spectral set σ of $\sigma(T)$ [8, p. 227]. The proof of Theorem 3.1 implies the following corollary.
Corollary 3.3. A necessary and sufficient condition for the operators $\alpha \tilde{A}$, $\alpha A, \beta \tilde{B}$ and βB of Theorem 3.1 to be $(G-n-P)$ is that A, B are spectrally normaloid at 0 .

The spectrally normaloid at 0 hypothesis of the theorem ensures that the quasinilpotent parts of the operators A, B, \tilde{A} and \tilde{B} are the 0 operator. We observe here that the spectrally normaloid property at 0 for A (resp., B) is vacuously satisfied if $0 \notin \sigma(A)$ (resp., $0 \notin \sigma(B)$).

A particular case of Theorem 3.1, where a number of the hypotheses of the theorem are inbuilt into the operators being considered, is that of the tensor products of operators satisfying the $(G-n-P)$ property.

Let $\mathcal{H} \bar{\otimes} \mathcal{H}$ denote the completion, endowed with a reasonable uniform cross norm, of the algebraic tensor product $\mathcal{H} \otimes \mathcal{H}$. For $S, T \in \mathcal{B}(H)$, let $S \otimes T \in$ $\mathcal{B}(\mathcal{H} \bar{\otimes} \mathcal{H})$ denote the tensor product of S and T. Define operators $A, B \in$ $\mathcal{B}(\mathcal{H} \bar{\otimes} \mathcal{H})$ by $A=S \otimes I$ and $B=I \otimes T$, and let S, T, A, B have the polar decompositions

$$
S=U_{1}|S|, T=V_{1}|T|, A=U P \text { and } B=V Q
$$

Then A and B doubly commute,

$$
\begin{aligned}
& U P=\left(U_{1} \otimes I\right)(|S| \otimes I), V Q=\left(I \otimes V_{1}\right)(I \otimes \mid T), \\
& \tilde{A}=P^{\frac{1}{2}} U P^{\frac{1}{2}}=\left(|S|^{\frac{1}{2}} \otimes I\right)\left(U_{1} \otimes I\right)\left(|S|^{\frac{1}{2}} \otimes I\right), \\
& \tilde{B}=Q^{\frac{1}{2}} V P Q \frac{1}{2}=\left(I \otimes|T|^{\frac{1}{2}}\right)\left(I \otimes V_{1}\right)\left(I \otimes|T|^{\frac{1}{2}}\right) \text { and } \\
& \widetilde{A B}=\tilde{A} \tilde{B}=\tilde{B} \tilde{A}=\left(|S|^{\frac{1}{2}} \otimes|T|^{\frac{1}{2}}\right)\left(U_{1} \otimes V_{1}\right)\left(|S|^{\frac{1}{2}} \otimes|T|^{\frac{1}{2}}\right) .
\end{aligned}
$$

Furthermore,

$$
\|\widetilde{A B}\|=\|\tilde{A}\|\|\tilde{B}\|,
$$

$$
\begin{aligned}
\sigma(\widetilde{A B}) & =\sigma(\tilde{S} \otimes \tilde{T})=\sigma(\tilde{S}) \sigma(\tilde{T})=\sigma(\tilde{A}) \sigma(\tilde{B}) \\
& =\sigma(S) \sigma(T)=\sigma(A) \sigma(B)
\end{aligned}
$$

Evidently,

$$
\begin{aligned}
\tilde{A} \in(G-n-P) & \Longleftrightarrow \tilde{S} \in(G-n-P), \\
\tilde{B} \in(G-n-P) & \Longleftrightarrow \tilde{T} \in(G-n-P) \text { and } \\
\widetilde{A B} \in(G-n-P) & \Longleftrightarrow \tilde{S} \tilde{T} \in(G-n-P) .
\end{aligned}
$$

Combining this information, we have:
Corollary 3.4. Given operators $S, T \in \mathcal{B}(H)$, if $\widetilde{S \otimes T} \in(G-n-P)$ and $\|S \otimes T\| \leq \| \widetilde{S \otimes T \|}$, then $\frac{S}{\|\tilde{S}\|}, \frac{T}{\|\tilde{T}\|} \in(G-n-P)$ if and only if S, T are spectrally normaloid at 0 .

The extension of Corollary 3.4 to the Hilbert-Schmidt class $\mathcal{B}\left(\mathcal{C}_{2}(\mathcal{H})\right)$ is almost automatic for the reason that the tensor product $S \otimes T$ can be identified with the restriction $\left.\mathcal{E}_{S, T^{*}}\right|_{\mathcal{B}\left(\mathcal{C}_{2}(\mathcal{H})\right)}$ of the elementary operator $\mathcal{E}_{S, T^{*}}(X)=$ $S X T^{*}, X \in \mathcal{B}\left(\mathcal{C}_{2}(\mathcal{H})\right)[3]$.

Corollary 3.5. Given operators $S, T \in \mathcal{B}(H)$ such that $\|\widetilde{S \otimes T}\| \leq\|S \otimes T\|$ and $\mathcal{E}_{\tilde{S}, \tilde{T}^{*}} \in(G-n-P), \frac{S}{\|\tilde{S}\|}$ and $\frac{T}{\|\tilde{T}\|}$ are $G-n-P$ if and only if S and T are spectrally normaloid at 0 .

References

[1] J. K. Baksalary and X. J. Liu, An alternative characterization of generalized projectors, Linear Algebra Appl. 388 (2004), 61-65. https://doi.org/10.1016/j.laa.2004.01.010
[2] B. A. Barnes, Common operator properties of the linear operators $R S$ and $S R$, Proc. Amer. Math. Soc. 126 (1998), no. 4, 1055-1061. https://doi.org/10.1090/S0002-9939-98-04218-X
[3] A. Brown and C. M. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-166. https://doi.org/10.2307/2035080
[4] J. J. Buoni and J. D. Faires, Ascent, descent, nullity and defect of products of operators, Indiana Univ. Math. J. 25 (1976), no. 7, 703-707. https://doi.org/10.1512/iumj. 1976. 25.25054
[5] H. K. Du and Y. Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005), 313-318. https://doi.org/10.1016/j.laa.2004.11.027
[6] B. P. Duggal and I. H. Kim, Products of generalized n-projections, Linear Multilinear Algebra. https://doi.org/10.1080/03081087.2021.2002249
[7] J. Groß and G. Trenkler, Generalized and hypergeneralized projectors, Linear Algebra Appl. 264 (1997), 463-474. https://doi.org/10.1016/S0024-3795(96)00541-1
[8] H. G. Heuser, Functional Analysis, translated from the German by John Horváth, A Wiley-Interscience Publication, John Wiley \& Sons, Ltd., Chichester, 1982.
[9] L. Lebtahi and N. Thome, A note on k-generalized projections, Linear Algebra Appl. 420 (2007), no. 2-3, 572-575. https://doi.org/10.1016/j.laa.2006.08.011

Bhagwati P. Duggal
Faculty of Sciences and Mathematics
University of Niš
P.O. Box 224, 18000 Niš, Serbia

Email address: bpduggal@yahoo.co.uk
In Hyoun Kim
Department of Mathematics
Incheon National University
Incheon 22012, Korea
Email address: ihkim@inu.ac.kr

[^0]: Received October 27, 2022; Revised February 4, 2023; Accepted February 24, 2023.
 2020 Mathematics Subject Classification. Primary 47A62, 47B10, 47B20; Secondary 15A69, 47A05, 47B47.

 Key words and phrases. Hilbert space, generalised n-projection, Aluthge transform of a product of operators, tensor products, Hilbert-Schmidt operator.

 The second named author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1F1A1057574).

