• Title/Summary/Keyword: Beta crystal

Search Result 451, Processing Time 0.021 seconds

Crystal Structure and Functional Characterization of a Xylose Isomerase (PbXI) from the Psychrophilic Soil Microorganism, Paenibacillus sp.

  • Park, Sun-Ha;Kwon, Sunghark;Lee, Chang Woo;Kim, Chang Min;Jeong, Chang Sook;Kim, Kyung-Jin;Hong, Jong Wook;Kim, Hak Jun;Park, Hyun Ho;Lee, Jun Hyuck
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.244-255
    • /
    • 2019
  • Xylose isomerase (XI; E.C. 5.3.1.5) catalyzes the isomerization of xylose to xylulose, which can be used to produce bioethanol through fermentation. Therefore, XI has recently gained attention as a key catalyst in the bioenergy industry. Here, we identified, purified, and characterized a XI (PbXI) from the psychrophilic soil microorganism, Paenibacillus sp. R4. Surprisingly, activity assay results showed that PbXI is not a cold-active enzyme, but displays optimal activity at $60^{\circ}C$. We solved the crystal structure of PbXI at $1.94-{\AA}$ resolution to investigate the origin of its thermostability. The PbXI structure shows a $({\beta}/{\alpha})_8$-barrel fold with tight tetrameric interactions and it has three divalent metal ions (CaI, CaII, and CaIII). Two metal ions (CaI and CaII) located in the active site are known to be involved in the enzymatic reaction. The third metal ion (CaIII), located near the ${\beta}4-{\alpha}6$ loop region, was newly identified and is thought to be important for the stability of PbXI. Compared with previously determined thermostable and mesophilic XI structures, the ${\beta}1-{\alpha}2$ loop structures near the substrate binding pocket of PbXI were remarkably different. Site-directed mutagenesis studies suggested that the flexible ${\beta}1-{\alpha}2$ loop region is essential for PbXI activity. Our findings provide valuable insights that can be applied in protein engineering to generate low-temperature purpose-specific XI enzymes.

Hydro/solvothermal synthesis, crystal structure, and thermal behaviour of piperazine-templated nickel(II) and cobalt(II) sulfates

  • Kim, Chong-Hyeak;Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.309-315
    • /
    • 2006
  • Two piperazine-templated metal sulfate complexes, $(C_4N_2H_{12})[Ni(H_2O)_6](SO_4)_2$, I and ($C_4N_2H_{12}$) $[Co(H_2O)_6](SO_4)_2$, II, have been synthesized by hydro/solvothermal reactions and their crystal structures analyzed by single crystal X-ray diffraction methods. Complex I crystallizes in the monoclinic system, $P2_1/n$ space group, a=12.920(3), b=10.616(2), $c=13.303(2){\AA}$, ${\beta}=114.09(1)^{\circ}$, Z=4, $R_1=0.030$ for 3683 reflections; II: monoclinic $P2_1/n$, a=12.906(3), b=10.711(2), $c=13.303(2){\AA}$, ${\beta}=114.10(2)^{\circ}$, Z=4, $R_1=0.032$ for 4010 reflections. The crystal structures of the piperazine-templated metal(II) sulfates demonstrate zero-dimensional compound constituted by diprotonated piperazine cations, metal(II) cations and sulfate anions. The structures of complex I and II are substantially isostructural to that of the previously reported our piperazine-templated copper(II) sulfate complex $(C_4N_2H_{12})[Cu(H_2O)_6](SO_4)_2$. The central metal(II) atoms are coordinated by six water molecules in the octahedral geometry. The crystal structures are stabilized by three-dimensional networks of the $O_{water}-H{\cdots}O_{sulfate}$ and $N_{pip}-H{\cdots}O_{sulfate}$ hydrogen bonds between the water molecules and sulfate anions and protonated piperazine cations. Based on the results of thermal analysis, the thermal decomposition reactions of the complex I was analyzed to have three distinctive stages whereas the complex II proceed through several stages.

Crystal growth and scintillation properties of CsI:Na (CsI:Na 결정 육성과 섬광 특성)

  • Cheon, Jong-Kyu;Kim, Sung-Hwan;Kim, H.J.
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.443-448
    • /
    • 2010
  • In this work, the scintillation properties of CsI:Na crystal were investigated as radiation detection sensor. This scintillation material was grown by a 2-zone vertical Bridgman method. Under X-ray excitation the crystal shows a broad emission band between 280 nm and 690 nm wavelength range, peaking at 413 nm. Energy resolution for $^{137}Cs$ 662 keV $\gamma$-rays of the crystal was measured to be 6.9 %(FWHM). At room temperature, the crystal exhibits three exponential decay time components. The fast and major component of scintillation time profile of the crystal emission decays with a 457 ns time constant. Absolute light yield of the crystal was estimated to be 53,000 ph/MeV using LAAPD. The sample crystal shows proportionality of 30 % in the measured energy range from 31 to 1,333 keV. And the $\alpha/\beta$ ratio of the crystal was 0.14.

Fabrication and Characterization of a Fiber-Optic Alpha/Beta Detector for Nuclear Medicine Application (핵의학 적용을 위한 광섬유 기반의 알파/베타 검출기의 제작 및 특성분석)

  • Hong, Seung-Han;Yoo, Wook-Jae;Shin, Sang-Hun;Seo, Jeong-Ki;Han, Ki-Tek;Jeon, Da-Yeong;Cho, Seung-Hyun;Lee, Bong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.367-373
    • /
    • 2012
  • We fabricated a fiber-optic alpha/beta detector, which is composed of a sensing probe, a plastic optical fiber, a photomultiplier tube, and a multichannel analyzer, to obtain the energy spectra of radioactive isotopes. As inorganic scintillators of a sensing probe, a ZnS(Ag) film was coupled with a $CaF_2$(Eu) crystal for alpha and beta spectroscopy. In this study, $^{210}Po$ and $^{90}Sr$ were used as alpha and beta sources, respectively, and we measured the radiation energy spectra using a fiber-optic alpha/beta detector to identify alpha and beta emitting radionuclides for nuclear medicine application. Also, the variations of energy spectrum were obtained according to the length of plastic optical fiber.

Growth and optical properties for MgGa2Se4 single crystal thin film by hot wall epitaxy (Hot wall epitaxy법에 의한 MgGa2Se4 단결정 박막 성장과 광학적 특성)

  • Moon, Jong-Dae;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.99-104
    • /
    • 2011
  • A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. The crystal structure of these compounds has a rhombohedral structure with lattice constants $a_0=3.953\;{\AA}$, $c_0=38.890\;{\AA}$. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of $MgGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method were $6.21{\times}10^{18}\;cm^{-3}$ and 248 $cm^2/v{\cdot}s$ at 293 K, respectively. The optical absorption of $MgGa_2Se_4$ single crystal thin films was investigated in the temperature range from 10 K to 293 K. The temperature dependence of the optical energy gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's equation, $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=2.34\;eV$, ${\alpha}=8.81{\times}10^{-4}\;eV/K$ and ${\beta}=251\;K$, respectively.

Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 ZnAl2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Hyangsook;Bang, Jinju;Lee, Kijung;Kang, Jongwuk;Hong, Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.714-721
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.

Crystal Structure Analysis of 3-(4-ethylphenyl)-3H-chromeno[4,3-c]isoxazole-3a(4H)-carbonitrile

  • Malathy, P.;Ganapathy, Jagadeesan;Srinivasan, J.;Manickam, Bakthadoss
    • Journal of Integrative Natural Science
    • /
    • v.8 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • The crystal structure of the potential active 3-(4-ethylphenyl)-3H-chromeno[4,3-c]isoxazole-3a(4H)-carbonitrile ($C_{19}H_{16}N_2O_2$) has been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the monoclinic space group $P2_1/c$ with unit cell dimension a=6.6869 (8) ${\AA}$, b=15.8326 (19) ${\AA}$ and c= 15.237 (2) ${\AA}$ [${\alpha}=90^{\circ}$, ${\beta}=100.663^{\circ}$ and ${\gamma}=90^{\circ}$]. In the structure chromene, isoxazole and carboxylate are almost coplanar each other. All geometrical parameters revelled that chromene ring of pyran ring adopt sofa conformation. The crystal packing is stabilized by intermolecular C-H...N and C-H...O hydrogen bond interaction.

Crystal Structure Analysis of Methyl-3-phenyl-3H-chromeno[4,3-c]isoxazole-3a(4H)-carboxylate

  • Ganapathy, Jagadeesan;Srinivasan, J.;Manickam, Bakthadoss
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.184-191
    • /
    • 2015
  • The crystal structure of the potential active methyl-3-phenyl-3H-chromeno[4,3-c]isoxazole-3a(4H)-carboxylate ($C_{18}H_{15}NO_4$) has been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the orthorombic space group $P2_12_12_1$ with unit cell dimension $a=9.8320(17){\AA}$, $b=9.9890(18){\AA}$ and $c=15.588(3){\AA}$ [${\alpha}=90^{\circ}$, ${\beta}=90^{\circ}$ and ${\gamma}=90^{\circ}$]. In the structure chromene, isoxazole and carboxylate are almost coplanar each other. All geometrical parameters revelled that chromene ring of pyran ring adopt sofa conformation. The crystal packing is stabilized by intermolecular C-H...O and C-H...N hydrogen bond interaction.

Crystal Structure Analysis of N,N'-bis(3-chloro-2-methylsalicylidene)-1,4-butanediamine

  • Sharmila, P.;Rajesh, R.;Venkatesan, R.;Ganapathy, Jagadeesan;Aravindhan, S.
    • Journal of Integrative Natural Science
    • /
    • v.9 no.4
    • /
    • pp.255-260
    • /
    • 2016
  • The crystal structure of the saliciline derivatives N,N'-bis(3-chloro-2-methylsalicylidene)-1,4-butanediamine ($C_{20}H_{22}Cl_2N_2O_2$) has been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the triclinic space group $P{\bar{i}}$ with unit cell dimension $a=4.6085(3){\AA}$, $b=5.9747(3){\AA}$ and $c=5.9747(3){\AA}$ [${\alpha}=83.889(4)^{\circ}$, ${\beta}=86.744(5)^{\circ}$ and ${\gamma}=82.085(5)^{\circ}$]. The title compound is essentially planar conformation. The compound lies across a crystallographic inversion centre and adopts E configurations with respect to the C-N bonds. The crystal packing of the molecules of compound is stabilized through weak O-H...N intra molecular interactions

Crystal Structure Analysis of 4-Chloro-2{[(2-hydroxy-5-methylphenyl)amino]methyl}5-methylphenol

  • Sharmila, P.;Rajesh, R.;Venkatesan, R.;Ganapathy, Jagadeesan;Aravindhan, S.
    • Journal of Integrative Natural Science
    • /
    • v.9 no.4
    • /
    • pp.261-267
    • /
    • 2016
  • The crystal structure of the saliciline derivatives 4-chloro-2{[(2-hydroxy-5-methylphenyl)amino]methyl}5-methylphenol ($C_{15}H_{15}ClNO_2$) has been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the monoclinic space group P21/c with unit cell dimension $a=11.5241(2){\AA}$, $b=8.733(2){\AA}$ and $c=13.649(2){\AA}$ [${\alpha}=90^{\circ}$, ${\beta}=130.876(2)^{\circ}$ and ${\gamma}=90^{\circ}$]. the title compound are essentially planar conformation. The compound lies across a crystallographic inversion centre and adopts E configurations with respect to the C-N bonds. The crystal packing of the molecules of compound is stabilized through weak O-H...O inter molecular interactions.