Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.12.714

Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy  

Park, Hyangsook (Department of Physics, Chosun University)
Bang, Jinju (Department of Physics, Chosun University)
Lee, Kijung (Department of Physics, Chosun University)
Kang, Jongwuk (Department of Physics, Chosun University)
Hong, Kwangjoon (Department of Physics, Chosun University)
Publication Information
Korean Journal of Materials Research / v.23, no.12, 2013 , pp. 714-721 More about this Journal
Abstract
A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.
Keywords
$ZnAl_2Se_4$ single crystal thin films; optimum conditions of growth; mobility; photocurrent spectrum; crystal field splitting energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. I. Burlakov, Y. Raptis, V. V. Ursaki, E. Anastassakis, and I. M. Tiginyanu, Solid State Commun. 101, 377 (1997).   DOI   ScienceOn
2 J. D. Hecht, A. Elifler, V. Riede, and M. Schubert, Phys. Rev. B57, 7037 (1998).
3 T. Kai, M. Kaifuku, I. Aksenov, and K. Sato, Jpn. J. Appl. Phys. 34, 3073 (1995).   DOI
4 S. H. Choe, C. S. Yoon, and W. T. Kim, J. Mater. Res., 15, 2690 (2000).   DOI   ScienceOn
5 K. J. Hong, T. S. Jeong, and S. H. You, J. Crystal Growth, 310, 2717 (2008).   DOI   ScienceOn
6 P. Korczak and C. B. Staff, J. Crystal Growth, 24/25, 386 (1974).   DOI   ScienceOn
7 B. D. Cullity, Caddson-Wesley, chap.11, (1985).
8 C. S. Yoon, S. H. Choe and W. T. Kim, Semicond. Sci. Technol. 15, 1001 (2000).   DOI   ScienceOn
9 H. Fujita, J. Phys. Soc., 20, 109 (1965).   DOI
10 J. L. Shay and J. H. Wernick, (chap. 3, chap. 4, Pergamon Press, 1975).
11 Shay, J. L. and Wernick, J. H., Ternary chalcopyrite semiconductor : electronic properties, and applications, pergamon, chap. 4 (1975)
12 J. Hopfield. J. Phys. Chem. Solids 15, 97 (1960).   DOI   ScienceOn
13 J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper and F. Thiel, Phys. Rev., 9(4), 1719 (1974).   DOI
14 A. N. Georgobiani, S. I. Radautsan, and I. M. Tigiyanu, Sov. Phys. Semicond. 19, 121 (1985).
15 S. C. Hyun, C. D. Kim, C. S. Yoon, and S. H. Choe, J. Kor. Phys. Soc., 37, 295 (2000).
16 O. V. kulikova, N. A. Moldovyan, S. M. Popov, S. I. Radautsan and A.V. Siminel, Jpn. J. Appl. Phys. 32(3), 586 (1993).   DOI
17 Y. P. Varshni, Physica. 34, 149 (1967).   DOI   ScienceOn