• Title/Summary/Keyword: Berwald manifold

Search Result 9, Processing Time 0.022 seconds

WEAKLY BERWALD SPACE WITH A SPECIAL (α, β)-METRIC

  • PRADEEP KUMAR;AJAYKUMAR AR
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.491-502
    • /
    • 2023
  • As a generalization of Berwald spaces, we have the ideas of Douglas spaces and Landsberg spaces. S. Bacso defined a weakly-Berwald space as another generalization of Berwald spaces. In 1972, Matsumoto proposed the (α, β) metric, which is a Finsler metric derived from a Riemannian metric α and a differential 1-form β. In this paper, we investigated an important class of (α, β)-metrics of the form $F={\mu}_1\alpha+{\mu}_2\beta+{\mu}_3\frac{\beta^2}{\alpha}$, which is recognized as a special form of the first approximate Matsumoto metric on an n-dimensional manifold, and we obtain the criteria for such metrics to be weakly-Berwald metrics. A Finsler space with a special (α, β)-metric is a weakly Berwald space if and only if Bmm is a 1-form. We have shown that under certain geometric and algebraic circumstances, it transforms into a weakly Berwald space.

ON THE GENERALIZED RANDERS CHANGE OF BERWALD METRICS

  • Lee, Nany
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.387-394
    • /
    • 2010
  • In this paper, we study the generalized Randers change $^*L(x,y)=L(x,y)+b_i(x,y)y^i$ from the Brewald metric L and the h-vector $b_i$. And in search for a non-Berwald Landsberg metric, we obtain the conditions on $b_i(x,y)$ under which $^*L$ is a Landsberg metric.

ON THE SECOND APPROXIMATE MATSUMOTO METRIC

  • Tayebi, Akbar;Tabatabaeifar, Tayebeh;Peyghan, Esmaeil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.115-128
    • /
    • 2014
  • In this paper, we study the second approximate Matsumoto metric F = ${\alpha}+{\beta}+{\beta}^2/{\alpha}+{\beta}^3/{\alpha}^2$ on a manifold M. We prove that F is of scalar flag curvature and isotropic S-curvature if and only if it is isotropic Berwald metric with almost isotropic flag curvature.

ON THE BERWALD'S NEARLY KAEHLERIAN FINSLER MANIFOLD

  • Park, Hong-Suh;Lee, Hyo-Tae
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.649-658
    • /
    • 1994
  • The notion of the almost Hermitian Finsler manifold admitting an almost complex structure $f^i_j(x)$ was, for the first time, introduced by G. B. Rizza [8]. It is known that the almost Hermitian Finsler manifold (or a Rizza manifold) has been studied by Y. Ichijyo [2] and H. Hukui [1]. In those papers, the almost Hermitian Finsler manifold which the h-covariant derivative of the almost complex structure $f^i_j(x)$ with respect to the Cartan's Finsler connection vanishes was defined as the Kaehlerian Finsler manifold. The nearly Kaehlerian Finsler manifold was defined and studied by the former of authors [7]. The present paper is the continued study of above paper.

  • PDF

AN INTRINSIC PROOF OF NUMATA'S THEOREM ON LANDSBERG SPACES

  • Salah Gomaa Elgendi;Amr Soleiman
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.149-160
    • /
    • 2024
  • In this paper, we study the unicorn's Landsberg problem from an intrinsic point of view. Precisely, we investigate a coordinate-free proof of Numata's theorem on Landsberg spaces of scalar curvature. In other words, following the pullback approach to Finsler geometry, we prove that all Landsberg spaces of dimension n ≥ 3 of non-zero scalar curvature are Riemannian spaces of constant curvature.

Finsler Metrics Compatible With A Special Riemannian Structure

  • Park, Hong-Suh;Park, Ha-Yong;Kim, Byung-Doo
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.339-348
    • /
    • 2000
  • We introduce the notion of the Finsler metrics compat-ible with a special Riemannian structure f of type (1,1) satisfying f6+f2=0 and investigate the properties of Finsler space with them.

  • PDF

GLOBAL THEORY OF VERTICAL RECURRENT FINSLER CONNECTION

  • Soleiman, Amr
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.593-607
    • /
    • 2021
  • The aim of the present paper is to establish an intrinsic generalization of Cartan connection in Finsler geometry. This connection is called the vertical recurrent Finsler connection. An intrinsic proof of the existence and uniqueness theorem for such connection is investigated. Moreover, it is shown that for such connection, the associated semi-spray coincides with the canonical spray and the associated nonlinear connection coincides with the Barthel connection. Explicit intrinsic expression relating this connection and Cartan connection is deduced. We also investigate some applications concerning the fundamental geometric objects associated with this connection. Finally, three important results concerning the curvature tensors associated to a special vertical recurrent Finsler connection are studied.

THE HARDY TYPE INEQUALITY ON METRIC MEASURE SPACES

  • Du, Feng;Mao, Jing;Wang, Qiaoling;Wu, Chuanxi
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1359-1380
    • /
    • 2018
  • In this paper, we prove that if a metric measure space satisfies the volume doubling condition and the Hardy type inequality with the same exponent n ($n{\geq}3$), then it has exactly the n-dimensional volume growth. Besides, three interesting applications of this fact have also been given. The first one is that we prove that complete noncompact smooth metric measure space with non-negative weighted Ricci curvature on which the Hardy type inequality holds with the best constant are isometric to the Euclidean space with the same dimension. The second one is that we show that if a complete n-dimensional Finsler manifold of nonnegative n-Ricci curvature satisfies the Hardy type inequality with the best constant, then its flag curvature is identically zero. The last one is an interesting rigidity result, that is, we prove that if a complete n-dimensional Berwald space of non-negative n-Ricci curvature satisfies the Hardy type inequality with the best constant, then it is isometric to the Minkowski space of dimension n.