Comm. Korean Math. Soc. 9 (1994), No. 3, pp. 649-658

ON THE BERWALD’S NEARLY
KAEHLERIAN FINSLER MANIFOLD

HonNG-SUH PARK AND Hyo-TAE LEE

0. Introduction

The notion of the almost Hermitian Finsler manifold admitting an
almost complex structure f° j(z) was, for the first time, introduced by
G. B. Rizza [8]. It is known that the almost Hermitian Finsler manifold
(or a Rizza manifold) has been studied by Y. Ichijyo [2] and H. Hukui
(1]. In those papers, the almost Hermitian Finsler manifold which the h-
covariant derivative of the almost complex structure f* ;(z) with respect
to the Cartan’s Finsler connection vanishes was defined as the Kaehlerian
Finsler manifold. The nearly Kaehlerian Finsler manifold was defined
and studied by the former of authors [7]. The present paper is the
continued study of above paper.

In the present paper, we define and study the Berwald’s Kaehlerian
Finsler manifold and the Berwald’s nearly Kaehlerian Finsler manifold
by the h-covariant derivatives of the almost complex structure f* (@)
with respect to the Berwald’s Finsler connection following the example
of complex Riemannian geometry.

The terminology and notation are mainly referred to Matsumoto’s
monograph [4].

1. Preliminaries

We consider an n-dimensional Finsler manifold M with a fundamental
function L(z,y). The Finsler metric tensor ¢;;(z,y) is introduced by

1. .
(1.1) gij = 531'5]‘[12(55,&/),
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where 8; = 0/0y'. Let CT = (Fjik,Gij,Cjik) be the Cartan’s Finsler
connection. The connection coefficients I';*x, C;'x and non-linear con-

nection G* ; are constructed as follows:

i 1 iT AY
Uit = 26" (0kgjr + 6;9rk — 6r9kj),

2
i 1 ir( A 3 .
(1.2) Ci'x = 59 (Okgjr + 0;9rk — Orgi;);

where G* = v,y y*, v;'% = %g"(akg]‘r-i—ajgrk—3rg‘,-k), 8k = Ok — G 0;
and §; = 8/0z*. For any Finsler tensor K'j(z,y), the h-covariant and
v-covariant derivatives with respect to the Cartan’s Finsler connection
CT are defined as follows respectively

(13) I‘.’i]"k = ak.[\"ij - Gmkémh’ij + Fmik.ﬁ’m]‘ - IX’imP]‘mk,

(1.4) K'lk = kK + Cr'h K™ — K' i C, ™.

Putting G]-ik = 3kGij, it is well known that sz‘k and G]-"k are the
positively homogeneous functions of degree 0 with respect to y*, and the
relation

(1.5) Gi]‘ = Fkijyk

holds in [4].

As well as the Cartan’s Finsler connection CT' = (I"j"k, G, C'J-ik), we
consider the Berwald’s Finsler connection BT" = ( jik, G';,0). For any
Finsler tensor K';(z,y), the h-covariant derivative with respect to the
Berwald’s Finsler connection BT is defined as follows

(1.6) I\"ij;k = 6klx’i,~ — ymerkérIx”,- + I\”m]'Gmlk — I\"imGjmk.

Let us assume that the Finsler manifold M admits an almost complex
structure f*,(z) and the fundamental function L(z,y) satisfies the Rizza
condition

(1.7) L(z,ycosf + f(z)ysinf) = L(z,y)
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for any function 6.
Since L(z,Ay) = AL(z,y) for any positive number A, the equation
(1.7) can be expressed as
(18) L(,&y) = [d1L(z, )
for non-zero complex number ¢ = a + b, where we put ¢y’ = ay’ +
bft (z)y". _
The Finsler manifold M which an almost complex structure fhi(z)
satisfying (1.7) or (1.8) is called an almost Hermitian Finsler manifold
with an almost Hermitian Finsler structure (f*;(z), gij(z,y)).
In the present paper, we assume moreover the dimension of M is even
because M admits an almost complex structure fij(x) [6]. Y. Ichijyo [2]
showed that the Rizza condition (1.7) is equivalent to

(1.9) gim(z,y)f™ {(2) + gjm(z, y)f " i(2) + 2C,jm (2, y)f " (2)y" =0,

where C;;m, = amgi].

M. Hukui [1] has proved that if g;;(z,y) and f*;(z) satisfy the condi-
tion
(1.10) 9pe(z,¥) fPi(2) f45(2) = gij(2,y),
then g¢;; is a Riemannian metric, that is, (f, ¢) is an almost Hermitian
structure.

On the other hand, in a Riemannian complex geometry, it is well know

that in order that the almost complex structure fij(:r) is integrable, it
is necessary and sufficient that the Nijenhuis tensor

(1.11) Nijk - (arfi]‘)frk - (arfik)frj + firajfrk - firakfrj
vanishes. An almost Hermitian manifold with an almqst Hermitian
structure (fij(z),g,-j(z)) is a Kaehlerian manifold if Vy f*; = 0, where

Vi is the covariant derivative with respect to the Levi-Civita connection
{j'k}. The Hermitian manifold satisfying the following condition

(1.12) Vif' ;4 Vife=0

1s called a nearly Kaehlerian manifold. In a nearly Kaehlerian mani-
fold, if the Nijenhuis tensor defined by (1.11) vanishes, then the nearly
Kaehlerian manifold is a Kaehlerian manifold [10].
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2. A Berwald’s Kaehlerian Finsler manifold

In an almost Hermitian Finsler manifold; the h-covariant derivative of
an almost complex structure f*;(x) with respect to the Cartan’s Finsler

connection CI' = (I"j"k, Gij,C'jik) is expressed as
(2.1) fijlk:akfij‘*‘rmikfmj_fimrjmk-
An almost Hermitian Finsler manifold satisfying f 1 = 0 is said to be

a Kaehlerian Finsler manifold. In an almost Hermltlan Finsler mani-
fold, the h-covariant derivative of an almost complex structure f*;(z)

with respect to the Berwald’s Finsler connection BT = (G'jik, G';,0) is
expressed as

(2.2) fij;k =akfij+Gmikfmj_fimGjmk'

An almost Hermitian Finsler manifold satisfying f* s = 0 will be
called a Berwald’s Kaehlerian Finsler manifold. In a Kaehlerian Finsler
manifold, we get from (2.1)

(2.3) akfij‘i“rmikfmj—fimrjmk = 0.
Transvecting (2.3) with y* and using (1.5), we have
(2.4) Y Om S+ G f™ — [ G =0
Differentiating (2.4) partially with respect to y*, we get
Of's + Gm'sf™; = f'mGi ™ = ik =

Thus we have

THEOREM 2.1. A Kaehlerian Fmsler manifold is a Berwald’s Kaehle-
rian Finsler manifold.
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REMARK. The inverse of this theorem is not satisfied.

We define the operators
ij _ Logigi giopiyepgii = Ligigi o opi g
(2.5) O, = '2—(636t = [ f7),7 00 = ”2‘(6361 + £ f7)

for almost complex structure f° ;(x) respectively.

In the Berwald’s Kaehlerian Finsler manifold, the tensors O and
*0% defined by (2.5) are h-covariant constant with respect to the
Berwald’s Finsler connection BT = (G}, G';,0).

If a Finsler tensor Ix"ihj(x, y) satisfies Oi{]&'ihj = 0, we say that Kih]-
is hybrid in ¢ and j, and if *Oi{]\",-hj = 0, we say that it is pure in 7 and

7.
Applying the Ricci identity of a Finsler tensor K* j(z,y) for the
Berwald’s Finsler connection BT = (G;*,G';,0), we have

(2.6) I(ij;h;k - I\"ij;k;h = IX’errihk - I\"irH]rhk - (arl\"i]‘)Rrhk,

where Hhijk 1s the h-curvature tensor and Ri]-k is the (v)h-torsion tensor
and these are expressed as in [5]
Hy'jp = 6kGr'; + GG — 8,Gh'y — GGy,

(2.7) i i i
Rijp = 6:G', — 6,G%.

In a Berwald’s Kaehlerian Finsler manifold, the Ricci identity of an
almost complex structure f*;(z) are expressed as follows from (2.6) and

flj;k = 07
(2.8) FriH = o H i =0,

from which

O (H; i) = 0.

Hence we obtain
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THEOREM 2.2. In a Berwald’s Kaehlerian Finsler manifold, the h-
curvature tensor H;" i is pure in r and j.

Now, the Nijenhuis tensor N* j; of the almost complex structure f'](.z)
defined by (1.11) is written as follows by substitution of (2.2)

Nk =(fm = Gm' e f™ + G o) f Tk
—(Flrr = G o5+ FnGe™ S
+ (T hy = G i ™+ TG ™)
~ Tk = G k™5 4 TG ™)
= fij;rfrk - fik;rfrj + firfrk;j - firfrj;k'
Hence we obtain

THEOREM 2.3. In a Berwald’s Kaehlerian Finsler manifold, the al-
most complex structure f*;(z) is integrable.

On the other hand, if an n-dimensional Finsler manifold M(n > 3)
satisfies Hy';x = K(g;l;jé;'C — ghkéj-), then M is called a Finsler space of
constant curvature [5]. In this case, (2.8) can be rewritten as

K" (grn6k — grk6}) — K f*(9;16% — g;6}) = 0.
Now, we assume K # 0, then we have
Fusi8k = frsbi = fregin + Fiugix = 0.

Contracting this equation with respect to ¢ and h, we get (1 —n)fy; —
fjk = 0. From (19), we find (1 — Tl)fkj + fk]' + 2ijmfmryr = 0. Since
n > 3, we find f;; = —n—%C,-jmf’"ry". Substituting this equation into
(1.9) again, we have Cjjm, f™,y" = 0. Therefore we have f;; = 0. This
is a contradiction. Consequently we obtain A = 0. Thus we have

THEOREM 2.4. Let M be an n-dimensional Berwald’s Kaehlerian
Finsler manifold. If M is a Finsler space of constant curvature and
n > 3, then the h-curvature tensor of the Berwald’s Finsler connection
vanishes.
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3. A Berwald’s nearly Kaehlerian Finsler Manifold

The almost Hermitian Finsler manifold satisfying
(3.1) fij;k+fik;j:0

will be called a Berwald’s nearly Kaehlerian Finsler manifold. In a
Berwald’s nearly Kaehlerian Finsler manifold, we have

0 = fhs;t + fht;s

(3.2) e "
:fhs;t+f sfjtfhi;j = ()sjtfhi;j

because of f'  f7;=—f"f" 4.
Thus we have

THEOREM 3.1. In a Berwald’s nearly Kaehlerian Finsler manifold,
fi]-.k is pure in j and k.

Using (2.2), the Nijenhuis tensor N* 4 of the almost complex structure
fi]-(ac) defined by (1.11) is written as follows

Nk =fSnf o= Farf i+ Fof o= Fof
(33) = 4firfrk;j - 2fir(frk;j + fr_f?’C)
- (fir;k + fik;r)frj + (fij;r + fir;j)frk‘

Therefore, in a Berwald’s nearly Kaehlerian Finsler manifold we obtain
Nije =4f' 7y
Thus we have

THEOREM 3.2. Let M be a Berwald’s nearly Kaehlerian Finsler man-
ifold. In order that the Nijenhuis tensor N*;; vanishes identically, it is
necessary and sufficient that M is a Berwald’s Kaehlerian Finsler mani-

fold.

In a Berwald’s nearly Kaehlerian Finsler manifold, if Cxim(z,y) f™;(z)
is pure in ¢ and j, then we have Ckim f™; — Ckm; f™; = 0, from which
C'k,-mfm]-yj = 0 by virtue of Ckmjy’ = 0. Therefore, from (1.9) and
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(1.10), gi; is a Riemannian metric, that is, (f,g) is an almost Hermitian
structure. Then we find f;; = —fji and I';'x = G,'x = {] k} because
of (1.2) and (1.5). Thus the h-covariant derivative with respect to the
Berwald’s Finsler connection coincides with the covariant derivative with
respect to the Levi-Civita’s connection. We get

kaij +ijik = fij;k +fik;j'

Hence we obtain

- THEOREM 3.3. In a Berwald’s Finsler manifold M, 11’C’k,mf . 1s pure
in 1 and j, then M is a nearly Kaehlerian manifold.

The functions G*(z,y) defined by (1.2) are (2)p-homogeneous in y.
We put G,'h]'k = 5;Gjhk and G,’j = Girjr. It notes that G,‘h]'k and G,‘j
are symmetric in the indices ¢, 3, k and ¢, j respectively.

By the Euler’s theorem of homogeneous function in y*, we have

Gi*jo = Gi"ox = Go"jx =0,
Gito(= Go*i) = G,
Goj = Gjo =0,
G"y = 2G*,
¥ 0.G" k(= y 0GPk = y 0;Gi* ok = y" Gt jr) = ~Git i,
yrarG,'j(= y’é,-Gj, = yrajGir) = —Gjyj,

(3.4)

where the index 0 denotes the contraction with element of support y.

If G;'x are functions of position alone, namely, 3;,G, k= Grljr =
0, then the Finsler manifold is said to be a Berwald space as in [9].
Moreover, the tensor field D with components

(35) Dl ik = G1 jk — (y achz] +6 G1k+5 Gki +6k 1])

(n +1)

is known as Douglas tensor in [3].
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THEOREM 3.4. If a Berwald’s nearly Kaehlerian Finsler manifold has
a vanishing Douglas tensor, then it is a Berwald space.

Proof. From the assumption, we have

(3.6) Of i+ 0k + G s f™j+ G i f = 2f G ™k = 0,

1 .
(3.7) Gi" = m(yhakGijJr(Sf‘ij+5kai+5;':Gij)-

Differentiating (3.6) partially with respect to y', we find
(3.8) Glimkfmj+Glimjfmk—2fimG1m]‘k = 0.
Contracting (3.8) with ¢ and {, we have

(3.9) Gk f™; + Gmjf™ — 27 G ™ i = 0.
Transvecting (3.9) with y’ and using (3.4), we find
(3.10) Gt f™, = 0.

Differentiating (3.10) with respect to y”, we can get

(311) fmoaerk + Gmkfmr =0.
That is,
(3.12) Gk f™ = —f"00:Cmk = ~f™ 0 Gir = Gmr f™ .

On the other hand, substituting (3.7) into (3.8), we have

(¥ 0kGim + 8|Gmp + 85, Gr + 6Gim) f™
(3.13) + (' 0;Gim + 6{Gmj + 65,Gj1 + 6 Gim ) f™
— 2f' (Y™ OkGj + 8 Gk + 6T Gri + 7 Gyj) = 0.
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Contracting (3.13) with ¢ and [, we have
(¥ 0r Gk + (n+ 2)Gmk)f™ ; + (47 0:Gomj + (1 + 2)Go, )
—2(f"00,Gxj + f7;Gir + f1Grj) = 0

because of 3jG1m = 51ij = BmGj,. From (3.12), the equation (3.14) is
reduced to

(3.14)

(3.15) iy 0 Gk + ™4y 0:Gomj + 2(n + 1)Gmp f™; = 0.
By means of (3.4) and (3.12), the equation (3.15) turns out
2nGmkfm] == O,

that is, G = 0. Substituting this equation into (3.7), we obtain G,—hjk =
0. Consequently, the manifold is a Berwald space. This completes the
proof of the Theorem.
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