• Title/Summary/Keyword: Bernstein-type inequalities

Search Result 8, Processing Time 0.025 seconds

BERNSTEIN-TYPE INEQUALITIES PRESERVED BY MODIFIED SMIRNOV OPERATOR

  • Shah, Wali Mohammad;Fatima, Bhat Ishrat Ul
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.305-313
    • /
    • 2022
  • In this paper we consider a modified version of Smirnov operator and obtain some Bernstein-type inequalities preserved by this operator. In particular, we prove some results which in turn provide the compact generalizations of some well-known inequalities for polynomials.

A Note on Exponential Inequalities of ψ-Weakly Dependent Sequences

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.3
    • /
    • pp.245-251
    • /
    • 2014
  • Two exponential inequalities are established for a wide class of general weakly dependent sequences of random variables, called ${\psi}$-weakly dependent process which unify weak dependence conditions such as mixing, association, Gaussian sequences and Bernoulli shifts. The ${\psi}$-weakly dependent process includes, for examples, stationary ARMA processes, bilinear processes, and threshold autoregressive processes, and includes essentially all classes of weakly dependent stationary processes of interest in statistics under natural conditions on the process parameters. The two exponential inequalities are established on more general conditions than some existing ones, and are proven in simpler ways.

Probabilistic Constrained Approach for Distributed Robust Beamforming Design in Cognitive Two-way Relay Networks

  • Chen, Xueyan;Guo, Li;Dong, Chao;Lin, Jiaru;Li, Xingwang;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2018
  • In this paper, we propose the distributed robust beamforming design scheme in cognitive two-way amplify-and-forward (AF) relay networks with imperfect channel state information (CSI). Assuming the CSI errors follow a complex Gaussian distribution, the objective of this paper is to design the robust beamformer which minimizes the total transmit power of the collaborative relays. This design will guarantee the outage probability of signal-to-interference-plus-noise ratio (SINR) beyond a target level at each secondary user (SU), and satisfies the outage probability of interference generated on the primary user (PU) above the predetermined maximum tolerable interference power. Due to the multiple CSI uncertainties in the two-way transmission, the probabilistic constrained optimization problem is intractable and difficult to obtain a closed-form solution. To deal with this, we reformulate the problem to the standard form through a series of matrix transformations. We then accomplish the problem by using the probabilistic approach based on two sorts of Bernstein-type inequalities and the worst-case approach based on S-Procedure. The simulation results indicate that the robust beamforming designs based on the probabilistic method and the worst-case method are both robust to the CSI errors. Meanwhile, the probabilistic method can provide higher feasibility rate and consumes less power.