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BERNSTIEN AND TURÁN TYPE INEQUALITIES FOR
THE POLAR DERIVATIVE OF A POLYNOMIAL

N. Reingachan1 and Barchand Chanam2

1Department of Mathematics, National Institute of Technology Manipur,
Imphal, 795004, India

e-mail: reinga14@gmail.com

2Department of Mathematics, National Institute of Technology Manipur,
Imphal, 795004, India

e-mail: barchand 2004@yahoo.co.in

Abstract. The goal of this paper is to extend some inequalities of Bernstein as well as

Turán type to polar derivative of a polynomial.

1. Introduction and Preliminaries

According to a well-known classical result due to Bernstein [3, 9], if p(z)
is a polynomial of degree n, then concerning the estimate of the maximum of
|p′(z)| on the unit circle |z| = 1,

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1.1)

A simple deduction from the Maximum Modulus Principle [10] for the esti-
mate of |p(z)| on a larger circle |z| = R > 1, we have

max
|z|=R>1

|p(z)| ≤ Rn max
|z|=1

|p(z)|. (1.2)

Both (1.1) and (1.2) are sharp and equality hold if p(z) has all its zeros at the
origin.
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It was proved by Frappier et al. [5] that if p(z) is a polynomial of degree n,
then

max
|z|=1

|p′(z)| ≤ n max
1≤k≤n

|p(eikπn)|. (1.3)

It is evident that inequality (1.3) is a refinement of (1.1), since the maximum
of |p(z)| on |z| = 1 may be larger than the maximum of |p(z)| taken over the
(2n)th roots of unity, as is shown by the simple example p(z) = zn + ia, a > 0.

If we restrict ourselves to the class of polynomials having no zero in |z| < 1,
then Erdös conjectured and later Lax [7] proved that

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|. (1.4)

On the other hand, when p(z) has all its zeros in |z| ≤ 1, Turán [12] proved

max
|z|=1

|p′(z)| ≥ n

2
max
|z|=1

|p(z)|. (1.5)

As a generalization of inequality (1.5), Dubinin [4] proved that if p(z) =
n∑
j=0

cjz
j is a polynomial of degree n having all its zeros in |z| ≤ 1, then for

|z| = 1

max
|z|=1

|p′(z)| ≥ 1

2

{
n+
|c0| − |cn|
|c0|+ |cn|

}
max
|z|=1

|p(z)|. (1.6)

As a refinement of inequality (1.4) analogous to (1.3) Aziz [2] proved that
if p(z) is a polynomial of degree n having no zero in |z| < 1, then for every
real α

max
|z|=1

|p′(z)| ≤ n

2
(M2

α +M2
α+π)

1
2 , (1.7)

where

Mα = max
1≤k≤n

|p(ei(α+2kπ)n)| (1.8)

and Mα+π is obtained by replacing α by α + π. Further, under the same
hypotheses, Aziz [2] proved for R > 1

max
|z|=1

|p(Rz)− p(z)| ≤ Rn − 1

2
(M2

α +M2
α+π)

1
2 , (1.9)

where Mα is as defined in (1.8).

As a refinement of inequality (1.7), Wali and Shah [13] proved the following
theorem.
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Theorem 1.1. If p(z) = cn

n∏
j=1

(z − zj) is a polynomial of degree n having no

zero in |z| < 1, then for every given real α

max
|z|=1

|p′(z)| ≤ n

2

{
(M2

α +M2
α+π)− 2

n

( n∑
j=1

|zj | − 1

|zj |+ 1

)
|p(z)|2

} 1
2
, (1.10)

where Mα is as defined in (1.8).

As a generalization of inequality (1.6), in the same paper, Wali and Shah
[13] proved:

Theorem 1.2. If p(z) = cn

n∏
j=1

(z − zj) is a polynomial of degree n having all

its zeros in |z| ≤ 1, then

max
|z|=1

|p′(z)| ≥ 1

2

[
n+

n∑
j=1

1− |zj |
1 + |zj |

]
max
|z|=1

|p(z)|. (1.11)

We now define for a polynomial p(z) of degree n, the polar derivative of
p(z) with respect to a real or complex number β as

Dβp(z) = np(z) + (β − z)p′(z).
This polynomial Dβp(z) is of degree at most n − 1 and it generalizes the

ordinary derivative p
′
(z) in the sense that

lim
β→∞

Dβp(z)

β
= p

′
(z).

Aziz [1] was among the first who extended some of the above inequalities
to polar versions by replacing the derivative of the polynomial with the polar
derivative of the polynomial. He, in fact, extended inequality (1.4) to polar
derivative by proving that if p(z) is a polynomial of degree n having no zero
in |z| < 1, then for every real or complex number β with |β| ≥ 1,

max
|z|=1

|Dβp(z)| ≤
n

2
(|β|+ 1) max

|z|=1
|p(z)|. (1.12)

Dividing both sides of (1.12) by |β| and letting |β| → ∞, we get inequality
(1.4).

Shah [11] extended Turán’s inequality (1.5) to polar derivative by proving
that if p(z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then for
every real or complex number β with |β| ≥ 1,

max
|z|=1

|Dβp(z)| ≥
n

2
(|β| − 1) max

|z|=1
|p(z)|. (1.13)
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Over the last four decades many different authors produced a large number
of results concerning the polar derivative of polynomials. More information on
classical results and polar derivatives can be found in the books of Milovanović
et al. [9] and Marden [8].

2. Main results

It is clearly of interest to find the corresponding extensions of Theorems 1.1
and 1.2 to polar derivative of the polynomial.

In this paper, we first extend Theorem 1.1 to polar derivative. For the proof
of the theorems, we require the following lemmas.

The next lemma is a special case of a result due to Govil and Rahman [6].

Lemma 2.1. If p(z) is a polynomial of degree n, then on |z| = 1,

|p′(z)|+ |q′(z)| ≤ nmax
|z|=1

|p(z)|, (2.1)

where q(z) = znp(1z ).

The following lemma is due to Aziz [2].

Lemma 2.2. If p(z) is a polynomial of degree n and q(z) = znp(1z ), then for
|z| = 1 and for every real α,

|p′(z)|2 + |q′(z)|2 ≤ n2

2
(M2

α +M2
α+π), (2.2)

where Mα is as define in (1.8).

Theorem 2.3. If p(z) = cn

n∏
j=1

(z − zj) is a polynomial of degree n having

no zero in |z| < 1, then for every given real α and for every real or complex
number β with |β| ≥ 1,

max
|z|=1

|Dβp(z)| ≤ nmax
|z|=1

|p(z)|+ (|β| − 1)
[n

2

{
(M2

α +M2
α+π)

− 2

n

n∑
j=1

(
|zj | − 1

|zj |+ 1

)
|p(z)|2

} 1
2
]
, (2.3)

where Mα is as defined in (1.8).

Proof. If p(z) is a polynomial of degree n, then for |z| = 1,

|q′(z)| = |np(z)− zp′(z)|, (2.4)
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where q(z) = znp(1z ).
Now, for every real or complex number β, the polar derivative of p(z) with

respect to β is

Dβp(z) = np(z) + (β − z)p′(z),
which further implies for |z| = 1,

|Dβp(z)| ≤ |np(z)− zp′(z)|+ |β||p′(z)|
= |q′(z)|+ |β||p′(z)| by (2.4)

≤ nmax
|z|=1

|p(z)|+ (|β| − 1)|p′(z)|. (2.5)

If p(z) = 0 for |z| = 1, then the result follows from Theorem 1.1. So we assume

that p(z) 6= 0 for |z| = 1. Since p(z) = cn

n∏
j=1

(z − zj), |zj | ≥ 1, we have

Re
zp

′
(z)

p(z)
= Re

n∑
j=1

z

z − zj
.

Hence, we have, for z 6= zj on |z| = 1,

Re
z

z − zj
≤ 1

1 + |zj |
.

Thus,

Re
zp

′
(z)

p(z)
≤

n∑
j=1

1

1 + |zj |
. (2.6)

Also, equality (2.4) for |z| = 1, gives∣∣∣∣∣z(q
′
(z))

p(z)

∣∣∣∣∣
2

=

∣∣∣∣∣n− z p
′
(z)

p(z)

∣∣∣∣∣
2

= n2 +

∣∣∣∣∣zp
′
(z)

p(z)

∣∣∣∣∣
2

− 2nRe
(zp′(z)
p(z)

)

≥ n2 +

∣∣∣∣∣zp
′
(z)

p(z)

∣∣∣∣∣
2

− 2n
( n∑
j=1

1

1 + |zj |

)
,

|q′(z)|2 ≥ n2|p(z)|2 + |zp′(z)|2 − 2n|p(z)|2
( n∑
j=1

1

1 + |zj |

)
or

2|p′(z)|2 ≤ |p′(z)|2 + |q′(z)|2 − n
{
n− 2

n∑
j=1

1

1 + |zj |

}
|p(z)|2. (2.7)
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Now using Lemma 2.2 to (2.7) we get,

2|p′(z)|2 ≤ n2

2
(M2

α +M2
α+π)− n

{
n− 2

n∑
j=1

1

1 + |zj |

}
|p(z)|2

=
n2

2
(M2

α +M2
α+π)− 2n

{n
2
−

n∑
j=1

1

1 + |zj |

}
|p(z)|2

=
n2

2
(M2

α +M2
α+π)− 2n

{ n∑
j=1

(1

2
− 1

1 + |zj |

)}
|p(z)|2

≤ n2

2

{
(M2

α +M2
α+π)− 2

n

n∑
j=1

( |zj | − 1

|zj |+ 1

)
|p(z)|2

}
or

|p′(z)| ≤ n

2

{
(M2

α +M2
α+π)− 2

n

n∑
j=1

(
|zj | − 1

|zj |+ 1

)
|p(z)|2

} 1
2
. (2.8)

Combining inequalities (2.5) and (2.8), we get the desired result. This com-
pletes the proof of Theorem 2.3. �

Remark 2.4. Dividing both sides of (2.3) by |β| and letting |β| → ∞, we get
inequality (1.10) of Theorem 1.1.

Further, we extend Theorem 1.2 to polar derivative analogue.

Theorem 2.5. If p(z) = cn

n∏
j=1

(z − zj) is a polynomial of degree n having all

its zeros in |z| ≤ 1, then for |z| = 1 and for every real or complex number β
with |β| ≥ 1,

max
|z|=1

|Dβp(z)| ≥
[

(|β| − 1)
{n

2
+

1

2

n∑
j=1

1− |zj |
1 + |zj |

}
− n

]
max
|z|=1

|p(z)|. (2.9)

Proof. We have, on |z| = 1

|Dβp(z)| =
∣∣∣np(z) + (β − z)p′(z)

∣∣∣
≥

∣∣∣n |p(z)|+ |(β − z)| ∣∣∣p′(z)∣∣∣∣∣∣
or equivalently

|Dβp(z)| ≥ |(β − z)|
∣∣∣p′(z)∣∣∣− n |p(z)|

≥ (|β| − 1)
∣∣∣p′(z)∣∣∣− n |p(z)| . (2.10)
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Now, since p(z) has all its zeros in |z| ≤ 1, we can write

p(z) =

n∑
j=1

cjz
j = cn

n∏
j=1

(z − zj),

where |zj | ≤ 1, for all j = 1, 2, ..., n. Thus,

Re
zp

′
(z)

p(z)
= Re

n∑
j=1

z

z − zj
.

Since |zj | ≤ 1, we have similarly as in the proof of Theorem 2.3, for |z| = 1

Re
z

z − zj
≥ 1

1 + |zj |
.

This implies ∣∣∣∣∣p
′
(z)

p(z)

∣∣∣∣∣ ≥ Re

(
zp

′
(z)

p(z)

)

=
n

2
+

n∑
j=1

(
−1

2
+Re

z

z − zj

)

≥ n

2
+

n∑
j=1

(
−1

2
+

1

1 + |zj |

)

=
n

2
+

1

2

n∑
j=1

1− |zj |
1 + |zj |

(2.11)

or equivalently, for |z| = 1∣∣∣p′(z)∣∣∣ ≥ (n
2

+
1

2

n∑
j=1

1− |zj |
1 + |zj |

)
|p(z)|. (2.12)

From (2.10) and (2.12), we have for |z| = 1

|Dβp(z)| ≥ (|β| − 1)
(n

2
+

1

2

n∑
j=1

1− |zj |
1 + |zj |

)
|p(z)| − n|p(z)|.

This completes the proof. �

Remark 2.6. Dividing both sides of (2.9) by |β| and letting |β| → ∞, we get
inequality (1.11) of Theorem 1.2.

Acknowledgments: We are grateful to the referees for their useful sugges-
tions.
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