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Abstract
Two exponential inequalities are established for a wide class of general weakly dependent sequences of

random variables, called ψ-weakly dependent process which unify weak dependence conditions such as mixing,
association, Gaussian sequences and Bernoulli shifts. The ψ-weakly dependent process includes, for examples,
stationary ARMA processes, bilinear processes, and threshold autoregressive processes, and includes essentially
all classes of weakly dependent stationary processes of interest in statistics under natural conditions on the process
parameters. The two exponential inequalities are established on more general conditions than some existing ones,
and are proven in simpler ways.
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1. Introduction

In this paper, we establish exponential inequalities for a wide class of general weakly dependent
sequences of random variables. An exponential inequality for the partial sum S n =

∑n
t=1 Xt of random

variables {Xt} is useful in many probabilistic derivations and convergence theorems. New exponential
inequalities are developed for a general weakly dependent sequence of stationary random variables,
which is called ψ-weak dependence, proposed by Doukhan and Louhichi (1999).

The ψ-weakly dependent process generalizes mixings and other weakly dependent random vari-
ables. It was shown, by Ango Nze et al. (2002) that the ψ-weak dependence unifies weak depen-
dence conditions such as mixing, association, Gaussian sequences and Bernoulli shifts. According to
Ango Nze and Doukhan (2004), stationary ARMA processes, bilinear processes, and threshold au-
toregressive processes are all ψ-weakly dependent processes and the ψ-weakly dependent sequences
essentially include all classes of weakly dependent stationary processes of interest in statistics under
natural conditions on the process parameters.

Recently many studies have been done on ψ-weakly dependent processes. Since Doukhan and
Louhichi (1999) which was the original work of the ψ-weak dependence, Coulon-Prieur and Doukhan
(2000), Doukhan and Louhichi (2001), Dedecker and Prieur (2004) Kallabis and Neumann (2006),
Doukhan and Neumann (2007, 2008), Hwang and Shin (2011, 2012a, 2012b, 2013a) among others
presented probabilistic properties and statistical inferences.

In particular, as for the inequalities of ψ-weakly dependent processes, Doukhan and Louhichi
(1999) established moment inequalities such as the Marcinkiewicz-Zygmund, Rosenthal and expo-
nential inequalities, Dedecker and Prieur (2004) the Bennett-type inequality, Kallabis and Neumann
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(2006) the Bernstein-type inequality. Doukhan and Neumann (2007) improved results for Bernstein-
type and Rosenthal-type inequalities, and Hwang and Shin (2013a) for Roussas-Ioannides-type in-
equalities.

In this paper, two new exponential inequalities are developed for a class of ψ-weak dependence
under some mild conditions. The conditions required for the exponential inequalities are weak depen-
dence coefficients of order o(r−2) and finiteness of asymptotic norm of the process. These conditions
are simpler than those works such as Kallabis and Neumann (2006) and Doukhan and Neumann
(2007). Proofs of the exponential inequalities are concise thanks to the results of Hwang and Shin
(2013a).

The remaining of the paper is organized as follows. Section 2 describes the notion of the ψ-weakly
dependent processes and Section 3 presents the main results of two exponential inequalities. Section
4 gives proofs.

2. ψψψ-Weak Dependence

The definition of ψ-weak dependence makes explicit the asymptotic independence between “past”
and “future”. In terms of the time series, for convenient functions g and h, it is assumed that
Cov(gpast, hfuture) is small when the distance between the “past” and the “future” is sufficiently large.
Asymptotics are expressed in terms of the distance between indices of the initial time series in the
“past” and the “future” terms; the convergence is not assumed to hold uniformly on the dimension of
the marginal involved.

We introduce some classes of functions to define the notion of the weak dependence. Let L∞ =∪∞
n=1 L∞(Rn), the set of real-valued and bounded functions on the space Rn for n = 1, 2, . . . . Consider

a function g : Rn → R where Rn is equipped with its l1-norm (i.e. ||(x1, . . . , xn)||1 = |x1| + · · · + |xn|)
and define the Lipschitz modulus of g,

Lip(g) = sup
x,y

|g(x) − g(y)|
||x − y||1

.

Let

L =
∞∪

n=1

Ln, where Ln =
{
g ∈ L∞(Rn); Lip(g) < ∞, ||g||∞ ≤ 1

}
.

The class L is sometimes used together with the following functions ψ = ψ0, ψ1, ψ2, η, κ and λ,
where ψ0(g, h, n,m) = 4||g||∞||h||∞, ψ1(g, h, n,m) = min(n,m)Lip(g)Lip(h), ψ2(g, h, n,m) = 4(n +
m) min{Lip(g),Lip(h)}, η(g, h, n,m) = nLip(g)+mLip(h), κ(g, h, n,m) = nmLip(g)Lip(h), λ(g, h, n,m) =
nLip(g) + mLip(h) + nmLip(g)Lip(h), for functions g and h defined on Rn and Rm respectively. See
Doukhan and Neumann (2007) and Dedecker et al. (2007).

Definition 1. (Doukhan and Louhichi, 1999) The sequence {Xt}t∈Z is called (θ,L, ψ)-weakly depen-
dent, (simply, ψ-weakly dependent), if there exists a sequence θ = (θr)r∈Z decreasing to zero at infinity
and a function ψ with arguments (g, h, n,m) ∈ Ln × Lm × N2 such that for n-tuple (i1, . . . , in) and
m-tuple ( j1, . . . , jm) with i1 ≤ · · · ≤ in < in + r ≤ j1 ≤ · · · ≤ jm, one has∣∣∣Cov(g(Xi1 , . . . , Xin ), h(X j1 , . . . , X jm ))

∣∣∣ ≤ ψ(g, h, n,m)θr.

According to Doukhan and Louhichi (1999), strong mixing is ψ0-weakly dependent, associated
sequences are ψ1-weakly dependent, and Bernoulli shifts and Markov processes are ψ2-weakly de-
pendent.
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3. Main Results

In this section we present two exponential inequalities in Theorems 1 and 2, which require some mild
assumptions of the weak dependence coefficients condition and asymptotically finite norm condition.
In proving Theorems 1 and 2, moment inequality results of Hwang and Shin (2013a) are applied with
an exponential function, which satisfy conditions of moment inequality in Hwang and Shin (2013a).

Theorem 1. Let {Xt} be a stationary sequence of ψ-weakly dependent random variables with mean
zero and with ψ-weak dependence coefficient sequence {θr}. If θr = o(r−2), and

lim
n→∞
||Xt ||γ = lim

n→∞
(E|Xγ|)

1
γ < ∞, where γ ∼

√
n (3.1)

then for any t > 0 and for sufficiently large n, we have

P

1
n

∣∣∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣∣∣ ≥ t

 ≤ C0 log n exp
− n

1
4

2 log n
t
.

Theorem 2. Let {Xt} be a stationary sequence of ψ-weakly dependent random variables with mean
zero and with ψ-weak dependence coefficient sequence {θr}. If θr = o(r−2), and

lim
n→∞
||Xt ||γ = lim

n→∞
(E|Xγ|)

1
γ < ∞, where γ ∼

√
n

then for any t > 0 and for sufficiently large n, we have

P (|S n| ≥ t) ≤ C0 log n exp
(
− t2

An + Bntϵ

)
,

where An can be chosen as any number greater than or equal to σ2
n and Bn = n3/4 log n/An for some

constant C0 > 0 and for any 0 < ϵ ≤ 1.

Remark 1. Similar types of inequalities of weakly dependent processes can be found in Kallabis
and Neumann (2006) and Doukhan and Neumann (2007). In Theorem 2.1 of Kallabis and Neumann
(2006), condition P(|Xt | ≤ M) = 1 is assumed, while in Theorem 1 of Doukhan and Neumann (2007),
condition E|Xt |k ≤ (k!)νMk for all k, for some finite M and ν, is assumed, and in Theorem 3 of Doukhan
and Neumann (2007), condition E|Xt |p−2 ≤ Mp−2 for some p is assumed, instead of finiteness of
asymptotic norm of condition (3.1) in our Theorems 1 and 2. Note that P(|Xt | ≤ M) = 1 and E|Xt |p−2 ≤
Mp−2 imply condition (3.1), and condition E|Xt |k ≤ (k!)νMk is more general than condition (3.1).
Thus, our condition of limγ→∞ ||Xt ||γ < ∞ can be regarded as an intermediate one between these two
conditions of Theorem 2.1 of Kallabis and Neumann (2006) and Theorem 1 of Doukhan and Neumann
(2007). As seen in the proofs of our theorem and those of Kallabis and Neumann (2006) and Doukhan
and Neumann (2007), proof on condition (3.1) is simpler than those of Theorem 2.1 of Kallabis and
Neumann (2006) and Theorem 1 of Doukhan and Neumann (2007).

Remark 2. As seen in the proof of Theorem 1, we can generalize exponential inequalities as:
Choose sequences β, γ and τ tending to ∞ as n → ∞ such that βγτ ∼ n and τ/(βγ2) → 0. If the
ψ-weak dependence process has norm condition ||Xt ||γ < ∞ for sufficiently large n, and the weak
dependence coefficients θ satisfies γθ1/2

βτ → 0, then for any t > 0 and for sufficiently large n, we have

P

1
n

∣∣∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣∣∣ ≥ t

 ≤ c0β exp

−(τβ
) 1

2 t
2
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and

P (|S n| ≥ t) ≤ c0β exp
(
− t2

An + Bntϵ

)
,

where An is chosen as any number greater than or equal toσ2
n and Bn = n(β/τ)1/2/An for some constant

c0 > 0 and for any 0 < ϵ ≤ 1.

Remark 3. The exponential inequality result in Theorem 2 is used for almost a complete conver-
gence of the kernel density estimators and consequently almost complete convergence of kernel mode
estimators and its convergence rate for ψ-weakly dependent sequences in Hwang and Shin (2013b).

4. Proofs

To prove Theorems 1 and 2 we review a result of moment inequality established in Hwang and Shin
(2013a). Let {Xt} be a sequence of ψ-weakly dependent random variables with the weak dependence
coefficient sequence (θr). Let A and B be disjoint finite sets of indices such that distance between A
and B is greater than or equal to r, and let ξ = h(X j : j ∈ A) and η = g(Xk : k ∈ B) where h(x j : j ∈ A)
and g(xk : k ∈ B) are some real-valued functions. We make the following assumptions:

(i) ψ is bounded for the class of g, h such that ||h||∞, ||g||∞,Lip(g), and Lip(h) are all bounded,

(ii) E|ξ|p, E|η|q < ∞ for some p, q > 1 with 1/p + 1/q < 1,

(iii) E|X j|p < ∞ for all j ∈ A; E|Xk |q < ∞ for all k ∈ B,

(iv) Dih(x j, j ∈ A) < ∞ for all x j, j ∈ A; Dig(xk, k ∈ B) < ∞ for all xk, k ∈ B,

(v) MD
h := maxi∈A max|x j |≤M |Dih(x j, j ∈ A)| = O(Mh) as M → ∞,

ND
g := maxi∈B max|xk |≤N |Dig(xk, k ∈ B)| = O(Ng) as N → ∞,

where

Di f (x1, . . . , xn) = lim sup
yi→xi

| f (x1, . . . , xn) − f (x1, . . . , xi−1, yi, xi+1, . . . , xn)|
|yi − xi|

,

Mh = max
∣∣∣∣h (

xM
j : j ∈ A

)∣∣∣∣ , Ng = max
∣∣∣∣g (

xN
k : k ∈ B

)∣∣∣∣ ,
xM

j = x j if |x j| ≤ M; xM
j = M if x j > M; xM

j = −M if x j < −M,

and xN
k is defined similarly. See Hwang and Shin (2013a) for some remarks on the conditions

above. Now we state the Roussas-Ioannides-type inequality.

Lemma 1. (Hwang and Shin, 2013a) Let {Xt} be a sequence of ψ-weakly dependent random vari-
ables with the weak dependence coefficient sequence (θr).

(a) Let ξ = h(X j : j ∈ A) and η = g(Xk : k ∈ B) where h and g are some real-valued functions, and
A and B are finite disjoint sets of indices such that distance between A and B is greater than or
equal to r. Under conditions (i)–(v) above, we have

|E(ξη) − (Eξ)(Eη)| ≤ C · θ1− 1
p−

1
q

r ||ξ||p||η||q
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for some constant C not depending on r.

(b) Let Ai, (i = 1, 2, . . . , γ), be mutually disjoint finite sets of indices such that distance between Ai+1
and Ai is greater than or equal to r for i = 1, . . . , γ − 1. Let ξi = hi(X ji : ji ∈ Ai) for some
real-valued functions hi such that ||X ji ||pi < ∞ for ji ∈ Ai, and

E|ξi|pi < ∞ with pi > 1, (i = 1, . . . , γ), and
1
p1
+ · · · + 1

pγ
=:

1
qγ

< 1.

Under conditions (i), (iv), (v) above for ψ and ξ = ξi, (i = 1, . . . , γ), we have∣∣∣∣∣∣∣E
 γ∏

i=1

ξi

 − γ∏
i=1

E[ξi]

∣∣∣∣∣∣∣ ≤ B(γ − 1)θ
1− 1

qγ
r

γ∏
i=1

||ξi||pi

for some constant B not depending on r.

Proof of Theorem 1: To prove Theorem 1 we apply Lemma 1(b) above. Under the conditions θr =

o(r−2) and ||Xt ||γ < ∞ where γ ∼
√

n for sufficiently large n, we apply Lemma 1(b) for function
h(x1, . . . , xτ) = exp(1/n3/4 ∑τ

i=1 xi) for τ ∼
√

n/ log n. Let γ = γn = ⌊
√

n⌋, β = βn = ⌊log n⌋ and
τ = τn = ⌊

√
n/ log n⌋, where ⌊x⌋ is the integer part of x. Note that βγτ ∼ n. For i = 1, . . . , γ, and

j = 1, . . . , β, let

U j,i = X[β(i−1)+( j−1)]τ+1 + · · · + X[β(i−1)+ j]τ,

and Wn = Xβγτ+1 + · · · + Xn. For j = 1, . . . , β, let Ū j = 1/n
∑γ

i=1 U j,i and W̄ = 1/n Wn. Since
1/n

∑n
i=1 Xi = Ū1 + · · · + Ūβ + W̄, we consider

P

1
n

∣∣∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣∣∣ ≥ t

 ≤ β∑
j=1

P
(∣∣∣Ū j

∣∣∣ ≥ t
β + 1

)
+ P

(∣∣∣W̄ ∣∣∣ ≥ t
β + 1

)
(4.1)

for any t > 0. Let α =
√
τ log n ∼ n1/4. For each j, we have

P
(
Ū j ≥

t
β + 1

)
= P

(
eαŪ j ≥ e

αt
β+1

)
≤ e−

αt
β+1 E

[
eαŪ j

]
≤ e−

αt
β+1


∣∣∣∣∣∣∣E (

e
α
n
∑γ

i=1 U j,i
)
−

γ∏
i=1

E
(
e
α
n U j,i

)∣∣∣∣∣∣∣ +
γ∏

i=1

E
(
e
α
n U j,i

) .
In order to find an upper bound of

∣∣∣E(eα/n
∑γ

i=1 U j,i ) −∏γ
i=1 E(eα/n U j,i )

∣∣∣, we apply Lemma 1(b) above.
Note that letting p = 2γ and X̄τ =

∑τ
i=1 Xi/τ, we have

E |h (X1, . . . , Xτ)|p = E
∣∣∣e α

n U1,1
∣∣∣p = E exp

2γ
√
τ log n
n

τX̄τ

 < ∞
for sufficiently large n since 2γ

√
τ log n

√
τ/n ∼ 1/

√
log n→ 0,

√
τX̄τ = Op(1) and thus (2γ

√
τ log n/

n)τX̄τ = op(1) as n→ ∞. By Lemma 1(b), we have∣∣∣∣∣∣∣E (
e
α
n
∑γ

i=1 U j,i
)
−

γ∏
i=1

E
(
e
α
n U j,i

)∣∣∣∣∣∣∣ ≤ c(γ − 1)θ
1− γ

p

(β−1)τ

(
E

∣∣∣e α
n U1,1

∣∣∣p) γ
p
= c(γ − 1)θ

1
2
(β−1)τ
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for some generic constant c > 0.
Using equality ex ≤ 1 + x + x2 (|x| ≤ 1/2) and noting that E(U j,i) = 0, E(U2

j,i) =
∑τ

j=1 EX2
j +

2
∑τ

i< j Cov(Xi, X j), we observe
γ∏

i=1

E
(
e
α
n U j,i

)
≤

γ∏
i=1

E
(
1 +

α

n
U j,i +

α2

n2 U2
j,i

)
≤

γ∏
i=1

(
1 + c

α2τ2

n2

)
(4.2)

and
α2τ2

n2 ∼
τ log n

n2

n
(log n)2 ∼

1
√

n(log n)2
∼ 1

bnγ
,

where bn = (log n)2 → ∞ as n → ∞. Thus the last term in (4.2) is asymptotically same as (1 +
c/(bnγ))γ ∼ ec/bn → 1 as n→ ∞. Hence,

P
(
Ū j ≥

t
β + 1

)
≤ e−

αt
β+1

[
c(γ − 1)θ

1
2
(β−1)τ + 1

]
≤ ce−

αt
β+1 ,

where the last inequality holds since (γ − 1)θ1/2
(β−1)τ ∼

√
nθ1/2

βτ → 0 for θr = o(r−2). The above
inequalities hold as U j,i are replaced by −U j,i, and thus we obtain P(|Ū j| ≥ t/(β + 1)) = P(Ū j ≥
t/(β + 1)) + P(−Ū j ≥ t/(β + 1)) ≤ ce−αt/(β+1). It is clear that P(|W̄ | ≥ t/(β + 1)) → 0 as n → ∞.
Therefore, in (4.1), we obtain

P

1
n

∣∣∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣∣∣ ≥ t

 ≤ C0β exp
(
− α

2β
t
)

for sufficiently large n. We complete the proof. �
Proof of Theorem 2: By Theorem 1, for sufficiently large n we have

P(|S n| ≥ nt0) ≤ C0 log n exp (−φnt0)

for any t0 > 0, where φn = n1/4/(2 log n). Equivalently, for any t > 0, we have

P(|S n| ≥ t) ≤ C0 log n exp
(
−φn

n
t
)
.

Note that sequence φn increases in n; consequently, for given fixed t > 0 there exists N such that
t < φn for all n ≥ N. Also note that σ2

n = O(n) and

φn

σ2
n
∼ φn

n
=

1

2n
3
4 log n

.

We observe, for 0 < ϵ ≤ 1,

t2

An + Bntϵ
≤ φnt

An + Bntϵ
≤ φnt
σ2

n + Bntϵ
=

φnt

σ2
n + tϵn

3
4 log n/An

∼ φnt
σ2

n + σ
2
ntϵ/(2Anφn)

=
φnt

σ2
n[1 + tϵ/(2Anφn)]

∼ φnt
σ2

n
∼ φn

n
t

and thus

exp
(
−φn

n
t
)
≤ exp

(
− t2

An + Bntϵ

)
.

Therefore, the desired inequality holds for sufficiently large n. �
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