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Abstract 
 

In this paper, we propose the distributed robust beamforming design scheme in cognitive 
two-way amplify-and-forward (AF) relay networks with imperfect channel state information 
(CSI). Assuming the CSI errors follow a complex Gaussian distribution, the objective of this 
paper is to design the robust beamformer which minimizes the total transmit power of the 
collaborative relays. This design will guarantee the outage probability of signal-to- 
interference-plus-noise ratio (SINR) beyond a target level at each secondary user (SU), and 
satisfies the outage probability of interference generated on the primary user (PU) above the 
predetermined maximum tolerable interference power. Due to the multiple CSI uncertainties 
in the two-way transmission, the probabilistic constrained optimization problem is intractable 
and difficult to obtain a closed-form solution. To deal with this, we reformulate the problem to 
the standard form through a series of matrix transformations. We then accomplish the problem 
by using the probabilistic approach based on two sorts of Bernstein-type inequalities and the 
worst-case approach based on S-Procedure. The simulation results indicate that the robust 
beamforming designs based on the probabilistic method and the worst-case method are both 
robust to the CSI errors. Meanwhile, the probabilistic method can provide higher feasibility 
rate and consumes less power. 
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1. Introduction 

Cognitive radio (CR) is an intelligent wireless communication technology developed from 
software radio (SR), which has been proposed by J. Mitola in 1999. It is a promising way to 
increase the efficiency of spectrum utilization in wireless systems and networks [1]. In the CR 
network, unlicensed secondary users (SUs) are allowed to access the spectrum which has been 
allocated to the licensed primary users (PUs). There are three main paradigms for the SUs to 
access the spectrum, namely interweave, overlay and underlay [2]. In recent years, along with 
the development of collaborative relay beamforming (CRBF) technology, it has been used to 
extend the range of wireless communications and mitigate the channel fading in wireless 
networks [3-5]. Meanwhile, the two-way relaying technology can provide better spectrum 
usage compared to the one-way relaying scheme, for the reason that the two-way relay 
technology enables two users communicate in both directions simultaneously to exchange 
information with each other [6, 7].   

Currently, a considerable number of research efforts have been dedicated to CR systems, 
which were usually based on the assumption of perfect channel state information (CSI) [8-10]. 
However, in practice, the CSI errors are inevitable due to the estimation errors, quantization 
errors and feedback errors. In [11], the authors have analyzed the uncertainty about the 
channel coefficients would cause performance loss on the network. The effects of imperfect 
channel knowledge on the SU capacity in CR networks were analysed in [12, 13]. In order to 
overcome the effects of the CSI errors in communication, the robust beamforming design is 
required when the CSI is imperfect. According to the model of CSI errors, robust 
beamforming design can be divided into two different classes. The first one is the worst-case 
assumption in which the CSI errors distribution cannot be acquired exactly, and the errors are 
deterministic and bounded in a region [14-16]. However, this method only considered the 
worst situation which rarely occur in practical communications, thus bringing conservative 
results. The second one is an statistical assumption, in which the CSI errors follow a known 
statistical distribution.  

Most of the prior works about robust beamforming designs only consider one-hop 
transmission without relays [17-20]. In [17], a transmit beamforming design for MIMO 
communications that maximizes the average SNR and guarantees robustness against channel 
estimation errors was investigated. A probabilistic robust beamforming design problem under 
a single-cell system with multiple-antenna transmitter and K single-antenna receivers was 
studied in [18, 19]. Nevertheless, only a few works concentrate on the cognitive network as the 
CSI errors exist in all channels estimation [20]. In addition, the authors investigated the unified 
transceiver designs framework for different wireless systems in [21, 22], and transceiver 
designs for dual-hop and multi-hop MIMO relaying network were discussed with perfect and 
imperfect CSI, while they did not tackle the problem from the probabilistic aspect of the 
constraints. The probability constrained robust beamforming designs which consider two-hop 
transmission with relays in conventional wireless network have been investigated in [23-25]. 
To the best of our knowledge, the robust beamforming design for cognitive two-way relay 
networks with statistical distribution model of CSI errors has not been investigated yet. 

Motivated with the above facts, we analyze the distributed robust beamforming design 
with two probability constrained in cognitive two-way relay networks. The objective of this 
paper is minimizing the transmit power of the collaborative relays, while guaranteeing 
probabilistic constraint of target SINR at each SU above the target value, and satisfying 
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probabilistic constraint of interference power at primary user (PU) below the given threshold. 
The main contributions of this work are summarized as follows:  
• We assume that the channel gains during multiple access (MAC) phase and broadcast 

(BC) phase are reciprocal and uncertain, the channel errors follow a known independent 
and identically distributed complex Gaussian random distribution. Under this assumption, 
we formulate the problem of distributed robust beamforming design with probabilistic 
constraints for cognitive two-way relay networks, which has not been well investigated 
before. 

• After reformulating the probabilistic constraints to the tractable forms through a series of 
matrix transformations, we propose the probabilistic method based on two kinds of 
Bernstein-type inequalities and rank-one relaxtion to convert the original non-convex 
problem to the standard convex problem, then we can derive the solution for the original 
problem. 

• We also propose the robust beamforming design by worst-case method based on extended 
S-procedure and rank-one relaxtion to tackle the problem. We verify that both 
probabilistic method and the worst-case method can overcome the effects of CSI errors, 
In addition, the probabilistic method can provide higher feasibility rate and is more 
energy-saving. 

Throughout this paper, the key mathematical notations are used as follows: boldface 
lowercase and uppercase letters denote vectors and matrices, respectively. ( )T⋅ , ( )H⋅ , ( )Tr ⋅ , 

⋅ and ( )rank ⋅  and ( )BD ⋅  denote transpose, conjugate transpose, the trace, the Frobenius 
norm, rank and block diagonalization of matrix, respectively. 1  denotes the vector with all 
elements being 1, I  denotes the identity matrix. A B  denotes Hadamard product of matrix 
A and matrix B , {}Re ⋅  represents the real part of the associated number, {}Pr ⋅  is the 
probability operator. 0≥X  indicates that X  is a positive semidefinite matrix. KC  denotes 
the space of 1K ×  matrices with complex entries, KH  is the set of K K×  complex Hermitian 
matrices. ( )diag x  returns a diagonal matrix with diagonal elements equal to vector x , 

( )diag A  returns the diagonal elements of the matrix A , ( )vec A  means the vectorization of 
matrix A  by stack its columns into a vector. ( )~x m,V  means that vector x  is complex 
Gaussian distributed with mean vector m  and covariance matrix V .  

The rest of paper is organized as follows. In Sect. 2 we describe the system model of our 
optimization problem. Both robust beamforming design based on probabilistic method by 
using Bernstein-Type inequalities and robust beamforming design based on worst-case 
method by using S-Procedure are proposed in Sect. 3. Finally, the simulation results and 
conclusions are given in Sects. 4 and 5, respectively.  

2. System Model 
The underlay two-way relay CR network is shown in Fig. 1, which is composed of a primary 
user (PU), a pair of secondary transceiver nodes, i.e. 1S  and 2S , and K  collaborative relays. 
Each communication node is equipped with a single antenna. It is assumed that there is no 
direct link between 1S  and 2S , i.e. they communicate with each other through K  random 
distributed collaborative amplify-and-forward (AF) relays in the secondary network. We 
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assume that the secondary network is allowed to share the same spectrum with primary 
network in an underlay manner. The bidirectional communication takes two phases, the MAC 
phase and the BC phase. The channel gains during the MAC phase and BC phase are 
reciprocal, i.e. the information transmits in time-division-duplex (TDD) systems.  

In the MAC phase, the two SUs transmit their signal meant for each other to the relays 
simultaneously, and the relays receive the signal transmitted from PU at the same time, 
accordingly, the received signal at the relays is 
 

   ,                                             (1) 
 
where  and are the transmit signals from  and , respectively, and 

, .  denotes the signal transmitted from PU, and . 

The signals  ,  and  are assumed to be independent among each other. The vector 
 , where is the additive noise at the relay , 

and . , ,  is the complex-valued channel 

coefficient from  to the  relay . ,  is the complex-valued 
channel coefficient from PU to the  relay . The vector , 
where  is the received signal at . 

 
Fig. 1. System model. The blue lines represent the MAC phase, the black lines represent the BC phase.  

The solid arrow lines are signal streams, the dashed arrow lines are interference streams. 
 

In the BC phase, the relay nodes broadcast the received signal in the MAC phase after 
multiplies by a complex relay beamformer  to SUs and PU simultaneously. Thus the 
broadcast processed signal at the relay nodes can be written as 
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where 1 2[ , , , ]T

R R R R Kx x x=x  , ( )diag=W w , and 1 2[ , , , ]T
Kw w w=w  . 

The received signal at Si , { }1,2i∈ ,  can be denoted as 
 

{ }0 0

interference noisedesired signal

   ,   1,2

T
i i R i
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i i i i i i R ii i

y n

x + x x n i

= +

= + + + ∀ ∈

h x
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 ,               (3) 

 
where in  is the additive noise at Si , it is assumed that ( )2~ 0,i in σ , and { }1,2i∈ , 1=2 , 

2=1 , then 21=h h and 12 =h h . 

The interference signal at PU caused by the relays is given as 
 

 0

0 1 1 0 2 2 0 0 0 0    

T
I R

T T T T
R

y

x + x x

=

= + +

h x

h Wh h Wh h Wh h Wn
.                          (4) 

 
During the MAC phase, the channel vector can be estimated by a central processor which is 

embedded in (or placed near to) the relay nodes. In the BC phase, the channel vector can be 
measured by the central processor at the SUs and PU, then sended to the relays via feedback 
channel. Considering limited training at SUs, less cooperation between cognitive relay nodes 
and PU, estimation errors, quantization errors and feedback errors, we assume the CSI errors 
existed during the both phases in our model. Then we adopt a circular complex Gaussian 
channel error model [20], the CSI error model is given by 
 

{ }ˆ ,      0,1,2i i i i= + ∀ ∈h h e ,                                            (5) 
 
where ˆ

ih  is the estimated CSI vector, ie  is the corresponding independent CSI error vector 
with ( )~i ie 0,E  ,  where iE  is the covariance of the CSI error vector. We assume that 

i Kε=E I (ε > 0 ) for simplicity sake [20]. 
Accordingly, the total transmit power of the relay nodes in the BC phase can be expressed 

as 
 

( )
2 2 22

0

ˆ
R i i i R

i
P = P σ

=

+ +∑ W h e W ,                                           (6) 

 
The received signal at iS  by considering the CSI errors can be represented as 
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 self-interference noisedesired signal

0 0
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ˆ ˆ +

ˆ      +

T T T
i i i i i i R ii i
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i i i i i i i

y x x n

x x x

= + +

+ +

h Wh h Wh h Wn
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

  ,   { }1,2i∈                         (7) 

 
Since iS  knows its own transmitted signal, the self-interference can be completely 

canceled from Eq. (7) with the known estimated channel information. Then the desired signal 
power at iS  yields as 
 

( ) ( )
2

ˆ ˆTi
s i ii i iP P= + +h e W h e ,                                            (8) 

 

The interference power and noise power at iS  can be denoted as int
iP  and i

nP , respectively, 
and given as  
 

( ) ( )2 2

int 0 0 0
ˆ ˆ ˆ ˆ( )i T T T

i i i i i i i iP P P= + + + + +h We e W h e h e W h e ,                     (9) 
 

  
22 2ˆ( )i T

n R i i iP σ σ= + +h e W .                                             (10) 
 

Therefore, the SINR at iS  yields as 
 

int

SINR
i

s
i i i

n

P
P P

=
+

 ,       { }1,2i∀ ∈ .                                      (11) 

 
The interference power at PU caused by the relays is then given by the following: 

 

( ) ( ) ( )
2 22

2
0 0 0 0

0

ˆ ˆ ˆT T

I i i i R
i

P P σ
=

= + + + +∑ h e W h e h e W .                           (12) 

 
 

3. Robust Beamforming Design 
The objective of this paper is to design the robust beamforming vector which minimizes the 
total transmit power of the relays in the collaborative two-way relay CR network, while 
subject to the probabilistic constraints of the SINR at the two SUs above the target value, as 
well as the probabilistic constraint of the interference at PU below a given threshold. 
Considering the CSI errors in the expression of RP , the probabilistic constrained robust 
beamforming design can be formulated as following Problem 1: 
 
 

   
, 

min    
t

t
w

                                                                            (13a) 
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   { }s.t.   Pr R RP t r≤ ≤                                                       (13b) 
           { } { }Pr SINR 1      =1, 2i i i iγ r≥ ≥ −                        (13c) 

  { } 0Pr IP ζ r≥ ≤ ,                                                    (13d) 
 
where iγ  is the target SINR threshold at iS , and ζ  denotes the maximum tolerable 
interference power at PU. (0,1]iρ ∈ , 0 (0,1]ρ ∈  and (0,1]Rρ ∈  are the maximum outage 
probability at iS , PU and relays, respectively. 

Since the probabilistic constraints in Eq. (13b), Eq. (13c)  and Eq. (13d) contain quadratic 
and higher forms of complex Gaussian random variables, it is difficult to derive the 
closed-form solution of Problem 1. In order to solve such intractable problem, we replace the 
probabilistic constraints with their approximate forms. We define the following quantities: 
 

( )vec=u W , H=S uu , 

2 2K K×
=E I , [ ]0   K K K K K K× × ×=A I  0  0 , 

[ ]1   K K K K K K× × ×=A 0  I  0 , [ ]2   K K K K K K× × ×=A 0  0  I , 
  1 1K K K× ×= ⊗B 1 I , 2 1K K K× ×= ⊗B I 1 ,                                                   (14) 

( )1
ˆdiagi K i×= ⊗C 1 h , ( )1

ˆdiagi i K×= ⊗D h 1 ,  

ij j i=G B A , ( ) ( )1 1
ˆ ˆ

ij j K K i× ×= ⊗ ⊗g h 1 1 h , 

0 1 2=   
HT T T  h h h h , 0 1 2=   

HT T T  e e e e . 
 

Accordingly, the expression of RP  can be rewritten in the following form 
 

{ } 2ReH H
R R RP a= + +e M e e m ,                                          (15) 

 

where 
2

0
R i i

i
P

=

=∑M F , 
2

0
R i i

i
P

=

=∑m Fh ,
2

2

0

H
i i R

i
a P fσ

=

= +∑h Fh , ( )2 21 1
T

i i iK K×
=F G I S G , 

( )2 2 2 21 1
T

K K K K
f

× × ×
= 1 I S 1 . 

Since the CSI errors are much smaller than the estimations of CSI, we neglect all the third 
and fourth order terms of the CSI errors and the cross-product terms. Thus, the Eq. (8) can be 
reformulated as 
 

{ }2Rei H H
s i i iP τ= + +e L e e l  ,                                            (16) 

 
where H

i i iiP=L Z SZ ,  i ii iiP ∗=l Z Sg ,  T
i i ii iiPτ ∗= g Sg , 

12 ii

T T
i i i= +Z G C G D  . 

The mathematical proof of Eq. (16) please refer to the Appendix.  
Similarly, Eq. (9), Eq. (10) and Eq. (12) can be expressed, respectively, by the following 

forms 
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 { }int 2Rei i H H
n i i iP P d+ = + +e N e e n  ,                                   (17) 

 

{ }0 0 002ReH H
IP c= + +e M e e m  ,                                       (18) 

 
where 

2
0

H H
i i i i i i R iP P σ= + +N TST V SV F , 

2
0 0i i i R iP σ∗= +n V Sg Fh , 

2 2
0 0 0

ˆ ˆT H
i i i R i id P σ σ∗= + +g Sg h Fh , 

2 1i i

T T
i i i= +T G C G D , 

01 0ii

T T
i i= +V G C G D  , 

2
2

0 0
0

= H
i i i R

i
P σ

=

+∑M U SU F , 

2
2

0 0 0
0

= i i i R
i

P σ∗

=

+∑m U Sg F h , 

2
2

00 0 0 0
0

= T H
i i i R

i
c P σ∗

=

+∑ g Sg h F h , 

1 010i

T T
i i= +U G C G D  .  

Hence, the optimization problem can be reformulated as Problem 2, and given as: 
 

, 
min     

t
t

S
                                                                                               (19a) 

{ }{ }s.t.    Pr 2ReH H
R R R Rc r+ ≥ ≥e M e e m                                           (19b) 

{ }{ } { }Pr 2Re     =1, 2H H
i i i ic ir+ ≤ ≤e M e e m                              (19c) 

{ }{ }0 0 0 0Pr 2ReH H c r+ ≥ ≤e M e e m                                             (19d) 

  ( )rank 1, 0= ≥S S  ,                                                                      (19e) 
 
where =Rc t a− , =i i i ic dγ τ− , 0 00=c cζ − , =i i i iγ−M L N , =i i i iγ−m l n . How we can solve 
this optimization problem is the subject of next section. 

3.1 Robust Beamforming Design Based on Bernstein-Type Inequalities  
In order to solve such non-convex and intractable probabilistic constrained optimization 
problem, we adopt two kinds of Bernstein-type inequalities, which are widely utilized to cope 
with the probabilistic constraints [18, 20, 23], then Eq. (13b)-(13d) can be transformed to 
deterministic forms. 

Before utilizing Bernstein-type inequalities, we rewrite the CSI errors as 
1

2
i i i=e E v , where 

1
2

iE  is the positive semidefinite square root of iE  and ~ ( , )i K K×v 0 I . Accordingly, we 

have 
1

2=e E v  , where ( )0 1 2BD ,  ,  =E E E E , 0 1 2  
HT T T =  v v v v . 

Then the probabilistic constraints in Eq. (19b)-(19d) can be reformulated as Eq. (20)-(22) 
respectively 
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{ }{ }Pr 2Re 1H H
R R R Rc r+ ≤ ≥ −v v vM m


 ,                                      (20) 
 

{ }{ }Pr 2Re 1H H
i i i ic r+ ≥ ≥ −v v vM m


 ,                                         (21) 
 

{ }{ }0 0 0 0Pr 2Re 1H H c r+ ≤ ≥ −v v vM m


 ,                                        (22) 
 

where 
1 1

2 2

j j=M ME E


, 
1

2

j j= Em m , and { }0,  1,  2,  j R∈ .  

Then the probabilistic constraints in Eq. (20)-(22) can be transformed into tractable forms 
by introducing the two kinds of Bernstein-type inequalities effectively [26]. The probabilistic 
constraint of RP , SINR and IP  can be written as the following deterministic form respectively 
 

( ) ( ) ( )2 2Tr 2 vec 2R R R R R R Rs cδ δ ++ + + ≤M M m M
  

 ,                      (23) 

 

( ) ( ) ( )2 2Tr 2 vec 2i i i i i i is cδ δ −− + − ≥M M m M
  

 ,                         (24) 

 

( ) ( ) ( )2 2
0 0 0 0 0 0 0Tr 2 vec 2 s cδ δ ++ + + ≤M M m M
  

 ,                        (25) 

 
where ( )= lnR Rδ ρ− , ( )= lnj jδ ρ− , ( )0 0= lnδ ρ− . Then, Eq. (23)-(25) can be reformulated 
as the following convex form respectively 
 

( )
( ) 2 2

Tr 2

vec 2

0

R R R R R R

R R R

R R

a b c

a

b

δ δ + + ≤


 + ≤

 − ≥

M

M m

I M









 ,                                             (26) 

 

( )
( ) 2 2

Tr 2

vec 2

0

i i i i i i

i i i

i i

a b c

a

b

δ δ − − ≥


 + ≤

 + ≥

M

M m

I M









     ,                                             (27) 

 

( )
( )
0 0 0 0 0 0

2 2
0 0 0

0 0

Tr 2

vec 2

0

a b c

a

b

δ δ + + ≤


 + ≤

 − ≥

M

M m

I M









   ,                                             (28) 

 
where Ra , Rb , ia , ib , 0a  and 0b  are slack variables, and 0Rb ≥ , 0ib ≥ , 0 0b ≥ . 
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Accordingly, the problem 2 can be conservatively transformed as Problem 3: 
 

( )
{ }

, 

0

min     

  s.t.    (26),   (27),   (28)
           rank 1, 0

           0,  0,  0,    1,  2

t

R i

t

b b b i

= ≥

≥ ≥ ≥ ∀ ∈

S

S S
 .                               (29) 

 
However, the optimization problem in Eq. (29) is still non-convex due to the rank-one 

constraint. Fortunately, we can convert the Problem 3 into a convex SDP problem by using 
semi-definite relaxation (SDR) technique, which can be efficiently solved by the well-known 
SDP solvers such as CVX [27]. Then we can derive the optimal solution optS . If rank( ) 1opt =S , 
the optimal solution of Problem 1 can be acquired by adopting eigenvalue decomposition. 
When rank( ) 1opt >S , randomization and eigenvector approximation can be used to derive the 
approximate solution [28] . 

3.2 Robust Beamforming Design Based on S-Procedure 
For comparison purpose, in this subsection we cope with the probabilistic constrained 
Problem 2 by applying an extended S-Procedure. In order to use this scheme, the statistical 
distribution CSI errors model will be replaced by the bounded model [3]. We can obtain the 
safe approximation of the probabilistic constraints of Eq. (19b)-(19d) as 
 

{ }2Re 0H H
R R Rc+ − ≤e M e e m  ,                                           (30) 

 

{ }2Re 0H H
i i ic+ − ≥e M e e m  ,                                              (31) 

 

{ }0 0 02Re 0H H c+ − ≤e M e e m ,                                              (32) 

 
while e  in Eq. (30)-(32) satisfy the following constraints 
 

{ } { },   , , H
i i i ir ir≤ ≥ − ∈2Pr 1 − 1 2e e  ,                                  (33) 

 
where 

i
r  is the radius of the sphere. It is easy to see that 2

i
r  is a Chi-square random variable 

with 2K degrees of freedom. It can be calculated as [29] 
 

( ) { },   , , 
χ

ρ ε−= Φ − ∈2
2

2 1 1 2 − 1 2
K

i i
r i  ,                                   (34) 

 

where ( )χ
−Φ 2

2

1

K

x  is the inverse cumulative distribution function of an Chi-square random 

variable with 2K degrees of freedom at x. Currently, the optimization problem is still difficult 
to be solved due to the CSI error vectors are continuous over the given sphere error bounding, 
so the constraint is semi-infinite. Then, we transform the semi-infinite constraints to a finite 
number of LMIs by the extended S-procedure [30]. 
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Based on the S-procedure, the constraints in Eq. (19b)-(19d) can be converted to Eq. 
(35)-(37) respectively 
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where 0Rjλ ≥ , 0ijλ ≥ , 0 0jλ ≥  are slack variables. 

Then Problem 2, using the above equivalent constraints, can be reformulated to Problem 4: 
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The optimization problem in Eq.(38) can be solved by CVX after dropping the rank-one 

constraint. And moreover, we provide the computational complexity of problems in Eq. (29), 
Eq. (38) after dropping the rank-one constraint. The computational complexity is main from 
the computation of SDP. Problem 3 in Eq. (29) involves 4 linear matrix inequality (LMI) 
constraints of size 3K, 4 second-order cone (SOC) constraints and 8 LMI constraints of size 1. 
While problem 4 in Eq. (38) has 4 LMI constraints of size  3 +1K and 12 LMI constraints of 
size 1. In addition, both of the problems have 1 LMI constraints of size 2K . Thus, problems 3 
based Bernstein-type inequalities has higher computational cost due to the more complicated 
constraints [31]. 
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4. Simulation Results and Discussions 
In the following simulations, the channels are set to be Rayleigh flat fading environment, and 
the channel coefficients are ( )0 , 0.5= ×h 0 I , ( )1 2 , = =h h 0 I . The number of relays is 

4K = . The transmit power of PU and iS  are 0 1 2 8 dBwP P P= = = . The outage probabilities 
are all set to be 0.1, i.e. 0 1 2 0.1ρρρ  = = = . The noise variances at all receivers are assumed to 
be equal to 1, i.e. 2 2 2

1 2 1Rσ σ σ= = = . The CSI errors’ variance is set 0.002ε = . The target 
SINR threshold at the two SUs are assumed to be the same, i.e. 1 2γ γ γ= = . 

-2 -1 0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

SINR(dB)

CD
F

 

 
probabilistic method
 worst-case method
 non-robust

γ=6dB

γ=0dB

 
Fig. 2. The CDF of SINR at secondary user for different value of SINR threshod ( 0 dBγ = , 6 dBγ = ). 
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Fig. 3. The CDF of interference power at PU for different values of interference power threshold 

( 2 dΒζ = , 2 dΒζ = − ). 
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In Fig. 2 and Fig. 3, we illustrate the cumulative distribution function (CDF) of SINR at 
SU and the interference power at PU over 2000 random channel realizations respectively. The 
robust beamforming designs based on Bernstein-type inequalities and S-Procedure, and 
non-robust beamforming design are compared. In Fig. 2, we set interference threshold at PU to 
be 0 dΒζ = , it can be obviously seen that the SINR of the non-robust beamforming design 
cannot always satisfy the given SINR threshold, more specifically, more than 50% cannot 
guarantee the target SINR value, i.e. 0 dΒγ =  and 6 dΒγ = . For both robust beamforming 
designs, less than 10% of the achieved SINR values cannot satisfy the the target SINR 
thresholds. That is to say, the robust beamforming designs can always guarantee probabilistic 
constraint of target SINR at each SU. In Fig. 3, we set SINR thresholds at 1S  and 2S  to be the 
same, i.e. 8 dΒγ = . We compare the CDF of the interference power at PU between the 
proposed robust beamforming design and non-robust beamforming design versus different 
interference thresholds. It is clear that the non-robust design performs worst, about 20% of the 
interference power exceeds the interference threshold when 2 dΒζ = , and nearly 40% of the 
interference power exceeds the interference threshold when 2 dΒζ = − , while both the 
proposed probabilistic method and the worst-case method robust beamforming design can 
guarantee the predetermined interference threshold. That is to say, from Fig. 2 and Fig. 3, it 
can be verified that the proposed probabilistic method and worst-case method are both robust 
to the CSI errors. 
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Fig. 6. Feasibility rate (%) versus the CSI error variance ε  for different interference threshold ( )dBζ . 
 

In Fig. 4, Fig. 5 and Fig. 6, we plot the feasibility rates of the two robust beamforming 
designs versus the target SINR γ , the interference threshold ζ and the CSI error  variance ε , 
respectively. In Fig. 4, we compare the feasibility rates of the two proposed robust 
beamforming design versus the target SINRs with 4K =  and 5K = . As expected, the 
feasibility rates decrease with the increase of target SINR γ . It is also shown that the 
feasibility rates increase corresponding with the increase of the number of relay. In addition, 
for a given target SINR value and interference threshold, the feasibility rate of robust 
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beamforming design based on probabilistic method is always higher than the worst-case 
method invariably. Fig. 5 plots the feasibility rates of the of the two robust beamforming 
designs versus the interference threshold with different target SINR values, i.e. 5 dBγ =  and 

10 dBγ = . It is shown that the feasibility rate decreases with the increase of target SINR value 
for a certain interference threshold as expected, and increases with the interference threshold 
increases. Moreover, we can observe that the probabilistic method based on probabilistic 
method can support higher region of interference threshold compared with the worst-case 
method. In Fig. 6, we illustrate the feasibility rates of the two robust beamforming designs 
versus the CSI error variance ε  for different values of interference threshold with a certain 
target SINR value, i.e. 4 dBγ = . We can see that the feasibility rates of the both methods 
decrease with the increase of ε , and the feasibility rate of the probabilistic method is always 
higher than the worst-case method for different values of interference threshold. In a word, 
from Fig. 4, Fig. 5 and Fig. 6, it can be verified that the probabilistic method can provide 
higher feasibility rate than the worst-case method. 

In Fig. 7, we plot the minimum transmit power budget of the two proposed robust 
beamforming designs versuses the target SINR γ , the transmit power with perfect CSI is also 
presented. It is shown that the transmit power budget of relay decrease with the increase of K . 
We also see that the higher target SINR require more transmit power of relays, and the 
problem is infeasible for a critical SINR threthod. And the probabilistic method based on 
Bernstein-type inequalities require less power than the worst-case method. That is to say, the 
probabilistic method is much more energy-saving. 
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      Fig. 7. Total transmit power (dB) versus target SINR ( )dBγ . 

5. Conclusions 
This paper investigates the distributed robust beamforming design with the goal of minimizing 
the total transmit power of collaborative relay with probabilistic constraints in cognitive 
two-way relay networks. The CSI errors model is a known circular complex Gaussian random 
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distribution in the system. After introducing an auxiliary variable and a series of matrix 
transformations, we employ the probabilistic method based on two kinds of Bernstein-type 
inequalities and worst-case method based on extended S-procedure to tackle the original 
non-convex optimization problem respectively. Simulation results demonstrate that the both 
robust beamforming designs can overcome the effects of CSI errors. Moreover, the 
probabilistic method based on Bernstein-type inequalities is more promising than the 
worst-case method, since it can make trade-off between robustness and effectiveness. 

6. Appendix 
To prove Eq. (16), we have 
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Similarly, we have 
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Since in practice, the estimation errors ie  and ie  are much smaller than the channel 

estimates ih  and ih , the third and the fourth order terms of ie  and ie , and their 
cross-product terms can be considered to be negligible. Then the Eq. (8) can be expressed as 
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Define H

i i iiP=L Z SZ , i ii iiP ∗=l Z Sg  and T
i i ii iiPτ ∗= g Sg , then we have 

 
{ }2Rei H H

s i i iP τ= + +e L e e l   .                                           (43) 
 

Therefore, we have proved Eq. (16).  
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