• 제목/요약/키워드: Bernoulli numbers and polynomials

검색결과 68건 처리시간 0.028초

TWO VARIABLE HIGHER-ORDER FUBINI POLYNOMIALS

  • Kim, Dae San;Kim, Taekyun;Kwon, Hyuck-In;Park, Jin-Woo
    • 대한수학회지
    • /
    • 제55권4호
    • /
    • pp.975-986
    • /
    • 2018
  • Some new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomilas were introduced recently by Kilar and Simsek ([5]) and we study the two variable Fubini polynomials as Appell polynomials whose coefficients are the Fubini polynomials. In this paper, we would like to utilize umbral calculus in order to study two variable higher-order Fubini polynomials. We derive some of their properties, explicit expressions and recurrence relations. In addition, we express the two variable higher-order Fubini polynomials in terms of some families of special polynomials and vice versa.

ANALYTIC PROPERTIES OF THE q-VOLKENBORN INTEGRAL ON THE RING OF p-ADIC INTEGERS

  • Kim, Min-Soo;Son, Jin-Woo
    • 대한수학회보
    • /
    • 제44권1호
    • /
    • pp.1-12
    • /
    • 2007
  • In this paper, we consider the q-Volkenborn integral of uniformly differentiable functions on the p-adic integer ring. By using this integral, we obtain the generating functions of twisted q-generalized Bernoulli numbers and polynomials. We find some properties of these numbers and polynomials.

LEONHARD EULER (1707-1783) AND THE COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION SERIES

  • Srivastava, Hari Mohan
    • 대한수학회지
    • /
    • 제44권5호
    • /
    • pp.1163-1184
    • /
    • 2007
  • In this presentation dedicated to the tricentennial birth anniversary of the great eighteenth-century Swiss mathematician, Leonhard Euler (1707-1783), we begin by remarking about the so-called Basler problem of evaluating the Zeta function ${\zeta}(s)$ [in the much later notation of Georg Friedrich Bernhard Riemann (1826-1866)] when s=2, which was then of vital importance to Euler and to many other contemporary mathematicians including especially the Bernoulli brothers [Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748)], and for which a fascinatingly large number of seemingly independent solutions have appeared in the mathematical literature ever since Euler first solved this problem in the year 1736. We then investigate various recent developments on the evaluations and representations of ${\zeta}(s)$ when $s{\in}{\mathbb{N}}{\backslash}\;[1],\;{\mathbb{N}}$ being the set of natural numbers. We emphasize upon several interesting classes of rapidly convergent series representations for ${\zeta}(2n+1)(n{\in}{\mathbb{N}})$ which have been developed in recent years. In two of many computationally useful special cases considered here, it is observed that ${\zeta}(3)$ can be represented by means of series which converge much more rapidly than that in Euler's celebrated formula as well as the series used recently by Roger $Ap\'{e}ry$ (1916-1994) in his proof of the irrationality of ${\zeta}(3)$. Symbolic and numerical computations using Mathematica (Version 4.0) for Linux show, among other things, that only 50 terms of one of these series are capable of producing an accuracy of seven decimal places.

ON p-ADIC q-BERNOULLl NUMBERS

  • Kim, Tae-Kyun
    • 대한수학회지
    • /
    • 제37권1호
    • /
    • pp.21-30
    • /
    • 2000
  • We give a proof of the distribution relation for q-Bernoulli polynomials $B_{k}$(x : q) by using q-integral and evaluate the values of p-adic q-L-function.n.

  • PDF

연속된 정수의 멱의 합의 변천사에 대한 고찰 (On the Historical investigation of Sums of Power of Consecutive Integer)

  • 강동진;김대열;박달원;서종진;임석훈;장이채
    • 한국수학사학회지
    • /
    • 제19권1호
    • /
    • pp.1-16
    • /
    • 2006
  • 수학에서 가장 매력적이고 중요한 이론들 중에 하나로 알려진 베르누이 (Bernoulli)수의 변천과정을 고찰한다. 즉, 당시대의 이러한 연속된 정수의 멱의 합에 대한 수학사적 배경들을 조사하고, 베르누이 수와 관련된 연구들이 현재 어떠한 방향으로 진행되고 있는지를 살펴본다.

  • PDF

SEVERAL RESULTS ASSOCIATED WITH THE RIEMANN ZETA FUNCTION

  • Choi, Junesang
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.467-480
    • /
    • 2009
  • In 1859, Bernhard Riemann, in his epoch-making memoir, extended the Euler zeta function $\zeta$(s) (s > 1; $s{\in}\mathbb{R}$) to the Riemann zeta function $\zeta$(s) ($\Re$(s) > 1; $s{\in}\mathbb{C}$) to investigate the pattern of the primes. Sine the time of Euler and then Riemann, the Riemann zeta function $\zeta$(s) has involved and appeared in a variety of mathematical research subjects as well as the function itself has been being broadly and deeply researched. Among those things, we choose to make a further investigation of the following subjects: Evaluation of $\zeta$(2k) ($k {\in}\mathbb{N}$); Approximate functional equations for $\zeta$(s); Series involving the Riemann zeta function.

  • PDF

NOTES ON SOME IDENTITIES INVOLVING THE RIEMANN ZETA FUNCTION

  • Lee, Hye-Rim;Ok, Bo-Myoung;Choi, June-Sang
    • 대한수학회논문집
    • /
    • 제17권1호
    • /
    • pp.165-173
    • /
    • 2002
  • We first review Ramaswami's find Apostol's identities involving the Zeta function in a rather detailed manner. We then present corrected, or generalized formulas, or a different method of proof for some of them. We also give closed-form evaluation of some series involving the Riemann Zeta function by an integral representation of ζ(s) and Apostol's identities given here.