• Title/Summary/Keyword: Bending angle

Search Result 649, Processing Time 0.027 seconds

Mechanical Properties and Fabric Handle of kansan Bamie (Part I) (한산 모시의 역학적 특성 및 태에 관한 연구(제1보))

  • 홍지명;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.8
    • /
    • pp.1315-1322
    • /
    • 1997
  • Ramie is one of the traditional fabrics in Korea, and very comfortable fabric for summer clothes because it has a high moisture-absorbing and transporting property. Futhermore ramie is very popular and Koreans prefer its handle for summer clothes. The kansan ramie has better quality as fibers and can be weaved as fine fabrics which are famous as kansan Fine ramie. Even though the good quality of kansan ramie has known widely, very few research work have been carried out on kansan ramie in the field of textile science. In this study, the analysis of the physical and chemical characteristics of Hansan ramie was conducted by using two different kinds of Hansan ramie: Hansan Fine ramie and kansan Coarse ramie. In addition, the same experiment was held on the one kind of chinese ramie to be compared with those of Hansan ramie. The following results were obtained from this experimental study. By the analysis of chemical composition of ramie, the similar chemical composition (a -cellulose: 83∼85%, pectin substances: 2.81∼ 3.01%) were found from all of the ramie fabrics used in this study. It has shown that Hansan coarse ramie has the highest toughness value and wrinkle recovery angle among the samples used in this study. From the result of KES-F system, it was found that Hansan Coarse ramie which is composed with the thicker yarns has the highest value on the bending properties, 2HG and surface properties. The primary hand value was also calculated by KN-203 LDY and value of Koshi was shown as the order of kansan coarse ramie> Chinese ramie> kansan fine ramie, and Hansan fine ramie had shown the highest Numeri and Fukurami value among the 3 samples used in this study.

  • PDF

Computations of Dynamic Wave Loads of a Catamaran (쌍동선의 파랑 동하중 추정)

  • H.H. Chun;M.S. Kim;J.H. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.50-60
    • /
    • 1999
  • In order to design a safe and economic catamaran, it is of clime importance to rigorously estimate the dynamic loads on the catamaran in waves. In this paper, the 2-D strip method by Lee et al.[3] is. extended to a 3-D method which can estimate the dynamic loads(horizontal and vertical shear forses, and bending and torsional moments) acting on the center of the cross deck of the catamaran travelling in an arbitrary wave heading angle. The computational results are compared with Wahab et al's experimental data[2], and also 2-D and 3-D numerical results published. It is found that in general, the 3-D method give much improved correlations with the experimental data compared with 2-D methods, but there are some discrcrepancy between the same 3-D results used by the same theory. In order to improve the accuracy, the effect of the viscous flow and the rigid consideration of the forward speed effect seem to be necessary.

  • PDF

Differences in Angle of the Lower Extremities and Electromyography of Elderly Women Experienced a Fall (낙상경험 여성노인의 하지 분절 각도와 근전도 차이)

  • Jeon, Kyoung-Kyu;Park, Kwang-Dong;Park, Se-Hwan;Kang, Young-Seok;Kim, Dae-Geun
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.245-255
    • /
    • 2009
  • The purpose of this study is to analyzed the coordination of lower limb of elderly women who experienced a fall to present basic information for sports science and to deal with the factors that make elderly women fall more effectively. Twenty elderly women were divided into two groups of 10. The mechanisms of balancing lower limb during walk and differences were compared and analyzed using motion analysis and electromyography. The findings of this study are as follows. The first, walking patterns of these women were unstable as their hip joints did not provide sufficient support because of aging. Second, the left and right knee joints showed different walking patterns. The third, the motions of ankle joints became abnormal with increased age. As for the activation of major lower limb muscles, rectus fermois muscle and biceps fermois muscle contracted more to prevent the bending of knees and moved forward while anterior tibial muscle and inner gastrocnemius muscle were demanded highly during walk and the rate of plantar flexion was reduced.

Analysis of Laminated Composite Skew Plates with Uniform Distributed Load by Finite Difference Method (유한차분법에 의한 등분포 상재하중하 적층 복합재 경사판 해석)

  • Park, Weon Tae;Choi, Jae Jin;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.291-302
    • /
    • 2000
  • In recent years the development of high modulus, high strength and low density boron and graphite fibers bonded together has brought renewed interestes in structural elements. When a plate with arbitrarily oriented layers and clamped boundary conditions is subjected to uniform loading, it is difficult to analyze and apply, compared with isotropic and orthotropic cases. Therefore the numerical methods, such as finite difference method or finite element method, should be emloyed to analyse such problems. In this study the finite difference technique is used to formulate the bending analysis of symmetric composite laminated skew plates. When this technique is used to solve the problem, it is desirable to reduce the order of the derivatives in order to minimize the number of the pivotal points involved in each equation. The 4th order partial differential equations of laminated skew plates are converted to an equivalent three of 2nd order partial differential equations with three dependant variables.

  • PDF

Multiscale Analysis on Vibration of the Photo Responsive Polymer (광변형 고분자의 동적 진동에 관한 멀티스케일 해석)

  • Yun, Jung-Hoon;Li, Chenzhe;Chung, Hayoung;Choi, Joonmyung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.571-575
    • /
    • 2016
  • Photo responsive polymer(PRP) is well known for its photo deformation under UV light, and goes back to its original shape in visible light due to the photoisomerization of the azobenzene inside the PRP. In this paper, dynamic study of the vibration in PRP is discussed. In order to predict photo-deformation of the PRP a multiscale modeling is introduced which covers quantum level photo excitation, microscopic morphology, and macroscopic deformation of the PRP. A simple 1D beam model is introduced to model dynamic bending behavior of the PRP. Through fast Fourious transformation analysis, we identify that vibration frequency of the PRP can be controlled by light polarization angle.

Development of Simplified Finite Element Models for Welded Joints (용접 결합부에 대한 단순화 유한요소 모델 개발)

  • Song, Seong-Il;Ahn, Sung Wook;Kim, Young Geul;Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1191-1198
    • /
    • 2015
  • In this paper, we develop simplified finite element (FE) models for butt-, lap- and T-welded joints by performing numerical and experimental experiments. Three-point bending tests of butt- and lap-welded specimens are performed to obtain the stiffness of the specimens and the strains at points near the welding beads. Similarly the stiffness and strains of T-welded specimen are measured by applying a point load at the end of the specimen. To develop simplified FE models, we consider the shape parameters of width, thickness and the angle of weld elements in the numerical simulations. The shape parameters of the simplified FE models are determined by building linear regression models for the experimental data sets.

Variational Formulation for Shape Optimization of Spatial Beam Structures (정식화를 이용한 3차원 구조물의 형상 최적설계)

  • 최주호;김종수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.123-130
    • /
    • 2002
  • A general formulation for shape design sensitivity analysis over three dimensional beam structure is developed based on a variational formulation of the beam in linear elasticity. Sensitivity formula is derived based on variational equations in cartesian coordinates using the material derivative concept and adjoint variable method for the displacement and Von-Mises stress functionals. Shape variation is considered for the beam shape in general 3-dimensional direction as well as for the orientation angle of the beam cross section. In the sensitivity expression, the end points evaluation at each beam segment is added to the integral formula, which are summed over the entire structure. The sensitivity formula can be evaluated with generality and ease even by employing piecewise linear design velocity field despite the bending model is fourth order differential equation. For the numerical implementation, commercial software ANSYS is used as analysis tool for the primal and adjoint analysis. Once the design variable set is defined using ANSYS language, shape and orientation variation vector at each node is generated by making finite difference to the shape with respect to each design parameter, and is used for the computation of sensitivity formula. Several numerical examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. The results are found excellent even by employing a simple linear function for the design velocity evaluation. Shape optimization is carried out for the geometric design of an archgrid and tilted bridge, which is to minimize maximum stress over the structure while maintaining constant weight. In conclusion, the proposed formulation is a useful and easy tool in finding optimum shape in a variety of the spatial frame structures.

  • PDF

Fracture Properties of High Strength Concrete Disk with Center-Crack (중앙에 노치가 있는 고강도 콘크리트 디스크의 파괴특성)

  • 진치섭;김희성;박현재;김민철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.161-167
    • /
    • 2001
  • It is difficult to obtain accurate fracture toughness values using three point bending test(TPB) proposed by RILEM committees because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, fracture toughness is easily obtained from crack initiation load in the disk test. In this paper, the fracture properties of high strength concrete disks with center-crack was investigated. For this purpose, the experimental results were compared with the results by finite element analysis(FEA). And the experimental fracture locus was compared with theoretical fracture locus. Also, the results of fracture properties for the degree of concrete strength are presented. It is concluded from this study that results from FEA with maximum stress theory were compared well with the results from experiment. And the degree of concrete strength was contributed to the crack initiation load and fracture toughness, but was not contributed to the failure angle. Also, The discrepancy of fracture locus between the maximum stress theory and the experiment for concrete is considered to depend upon a large energy requirement for inducing the mixed-mode and sliding mode fractures.

Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections (부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발)

  • Min, Byoung Cheol;Kyung, Yong Soo;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Generally the connection of members is defined as hinge or rigid. But, real joints on structure have to be considered semi-rigid connections because this permits relative rotation for members on joints. The purpose of this study is to derive a generalized tangential stiffness matrix of frames with semi-rigid connections and to develop a buckling analysis program. For the exact stiffness matrix, an accurate displacement field is introduced using an equilibrium equation for beam-columns under the bending and axial forces. Also, stability functions that consider sway deformation and force-displacement relations with rotational spring on ends were defined. In order to illustrate the accuracy of this study and the characteristics of semi-rigid for system buckling load, samples of angle-, portal- and 3-story frames with semi-rigid connections are presented, where the proposed approach is found to be in excellent agreement with other research results. Meanwhile, the application of codes such as Eurocode 3 and LRFD led to significant inaccuracies.

Optimization of Design Parameters for Lock-Claws of Pneumatic Fitting Using Taguchi Method (다구찌기법을 이용한 공압피팅용 원형 판스프링의 설계변수 최적화)

  • Kwon, Tae Ha;Suh, Chang Hee;Lee, Rac Gyu;Oh, Sang Kyun;Jung, Yun-Chul;Lim, Hwan Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1541-1546
    • /
    • 2013
  • The stress concentration of lock-claws, which are one of the important parts for pneumatic fitting for a flexible tube connection, was investigated by finite element simulation. In this study, the generation of the local plastic deformation was predicted when the tube was hooked up to a pneumatic fitting in order to disperse the stress concentration, and design optimization was carried out using the Taguchi method. For the optimization, the outer width, bending angle, and inner radius of the lock-claws are used as main variables. As a result, their respective contribution ratios are revealed as 81.3%, 10.9%, and 1.5%. The ratio of the total stress distribution was improved by 4% compared with the initial design of the lock-claws.