DOI QR코드

DOI QR Code

Multiscale Analysis on Vibration of the Photo Responsive Polymer

광변형 고분자의 동적 진동에 관한 멀티스케일 해석

  • Yun, Jung-Hoon (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Li, Chenzhe (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Chung, Hayoung (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Choi, Joonmyung (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Cho, Maenghyo (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 윤정훈 (서울대학교 기계항공공학부) ;
  • ;
  • 정하영 (서울대학교 기계항공공학부) ;
  • 최준명 (서울대학교 기계항공공학부) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Received : 2016.11.03
  • Accepted : 2016.11.17
  • Published : 2016.12.30

Abstract

Photo responsive polymer(PRP) is well known for its photo deformation under UV light, and goes back to its original shape in visible light due to the photoisomerization of the azobenzene inside the PRP. In this paper, dynamic study of the vibration in PRP is discussed. In order to predict photo-deformation of the PRP a multiscale modeling is introduced which covers quantum level photo excitation, microscopic morphology, and macroscopic deformation of the PRP. A simple 1D beam model is introduced to model dynamic bending behavior of the PRP. Through fast Fourious transformation analysis, we identify that vibration frequency of the PRP can be controlled by light polarization angle.

광변형 고분자(PRP)는 PRP 내부에 함유된 아조벤젠(azobenzene)의 광이성질화 현상에 의해 자외선을 받을 경우 수축을 하고, 이 상태에서 적외선을 받을 경우 원래대로 돌아오는 성질을 가지고 있다. 본 논문에서는 PRP의 진동 현상에 대한 동적해석이 논의된다. PRP의 광변형 양상을 예측하기 위해 양자역학, 고분자역학, 연속체 역학을 아우르는 멀티스케일 모델링 기법이 제안된다. PRP의 동적 진동 양상을 예측하기 위해 간단한 1D 빔 모델이 사용되었으며, FFT기법을 통해 진동 주파수 해석이 진행된다. 해석 결과 빛의 입력에 따른 PRP의 진동 양상은 빛의 편광 방향에 영향을 받는다는 것을 알 수 있다.

Keywords

References

  1. Boris, M.S., Vladimir, P.K., Howard, R.R. (2005) Radiative Processes in Atomic Physics, John Wiley.
  2. Cho, M., Kim, H., Kim, E. (2013) Transformation of Dynamic Loads into Equivalent Static Load based on the Stress Constraint Conditions, J. Comput. Struct. Eng., 26, pp.165-172.
  3. Ikeda, T. (2003) Photomodulation of Liquid Crystal Orientations for Photonic Applications, Journal of Materials Chemistry, 13, pp.2037-2057. https://doi.org/10.1039/b306216n
  4. Kumar, K., Knie, C., Bleger, D., Peletier, M.A., Fredrich, H., Hecht, S., Broer, D., Debije, M.G., Schenning, A. (2016) A Chaotic Self-Oscillating Sunlight-Driven Polymer Actuator, Nat. Commun., 7, p.11975. https://doi.org/10.1038/ncomms11975
  5. Lee, K.M., Tabiryan, N., Bunning, T.J. (2012) Photomechanical Mechanism and Structure-Property Considerations in the Generation of Photomechanical Work in Glassy, Azobenzene Liquid Crystal Polymer Networks, J. Mater. Chem., 22, pp.691-698. https://doi.org/10.1039/C1JM14017E
  6. White, T., Broer, D. (2015) Crystal Polymer Networks and Elastomers, Nat. Mater., 14, pp.1087-1098. https://doi.org/10.1038/nmat4433
  7. White, T.J., Tabiryan, N.V., Serak, S.V., Hrozhyk, U.A., Tondiglia, V.P., Koerner, H., Vaia, R.A., Bunning, T.J. (2008) A High Frequency Photodriven Polymer Oscillator, Soft Matter, 4, pp.1976-1798.
  8. Wie, J.J., Lee, K.M., Ware, T.H., White, T.J. (2015) Twists and Turns in Glassy, Liquid Crystalline Polymer Networks, Macromol., 48, pp.1087-1092. https://doi.org/10.1021/ma502563q
  9. Yu, Y., Nakano, M., Shshido, A., Shiono, T., Ikeda, T. (2004) Effect of Cross-linking Density on Photoinduced Bending Behavior of Oriented Liquid-Crystalline Network Films Containing Azobenzene, Chem. Mater., 16, pp.1637-1643. https://doi.org/10.1021/cm035092g
  10. Yun, J., Li, C., Chung, H., Choi, J., Cho, M. (2015) Photo Deformation in Azobenzene Liquid-Crystal Network: Multiscale Model Prediction and its Validation, Polymer, 75, pp.51-56. https://doi.org/10.1016/j.polymer.2015.08.013