• Title/Summary/Keyword: Behavior space approach

Search Result 198, Processing Time 0.026 seconds

Planning Guidelines for Outdoor Space in the Apartment Complex by Investigating Usage Behavior (이용행태조사를 통한 아파트 외부공간 계획방안에 관한 연구)

  • 김정례;박희진
    • Journal of the Korean housing association
    • /
    • v.12 no.3
    • /
    • pp.1-12
    • /
    • 2001
  • The purpose of this study was to investigate the outdoor space of the recent built apartment complex in Ulsan and to provide the basic information for planning and apartment outdoor space. Multiple methods were utilized such as questionnaire, observation, behavior-mapping, and photography. The sample consisted of 382 residents living in four apartment complex in Ulsan. data were analyzed by frequency and percentage using SPSS PC+. The observation was performed in seven outdoor space, i.e., green area, road area, exercise area, play area, parking area, and approach area. According to the findings of this study, residents did not actively involve in outdoor activities and seldom use the outdoor space. Various changes and erosions were observed as a trace, especially near fence and grass area because of unplanned location of entrances. Finally this study suggested several planning guidelines for outdoor space in apartment complex.

  • PDF

Behavioral Decentralized Optimum Controller Design for UAV Formation Flight (무인기 군집비행을 위한 행위기반 분산형 최적제어기 설계)

  • Kim, Seung-Keun;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.565-573
    • /
    • 2008
  • The behavior-based decentralized approach is considered for multi-UAV formation flight. It is assumed that each UAV has its own mission of flying to a specified region, while the distances between UAVs should be maintained. These two requirements may conflict with each other. To design the controller, coupled dynamics approach is applied to multi-UAVs with an assumption that each UAV can communicate with each other to share the state-information. Control gain matrices are optimized to acquire better performances of formation flying. To validate the proposed control approach, numerical simulation is performed for the waypoint-passing mission of multi-UAVs.

A Study on Behavioral Model and Spatial Configuration Analysis model in the Architectural Space (건축공간의 행동모델과 공간구조 분석모델에 관한 연구)

  • Lee, Jong-Ruyl
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.2
    • /
    • pp.61-66
    • /
    • 2012
  • In space syntax, the mathmatical process to get a integration could be restrictive in understanding spatial configuration since it is based on only one behavior model. In this study, As another approach to spatial configuration analysis based on behavioral model, there is the simulation tracking analysis model that simulates the movements of human in the space and analyze them. In this study, the relationship between integration and behavioral model will be defined and the similarities and the differences between space syntax and the simulation tracking analysis model will be demonstrated. Furthermore, these two analysis models will be understood as a variety of tools that can analyze an object in multiple viewpoints.

Frequency Domain Analysis of Lifting Problems with Explicit Kutta Condition

  • Kim, Jong-Un;Kim, Gun-Do;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.34-55
    • /
    • 2003
  • Explicit Kutta condition approximation, proved useful in existing time-domain solver of the unsteady propeller problem, requires a specified functional behavior of the vorticity in space near the trailing edge. In this paper, the strength of the discrete vortices is controlled to have a specified behavior in space in the frequency domain approach. A new formulation is introduced and is implemented for analysis of a lifting surface of a rectangular planform. Sample computations carried out according to the new formulation compares well with that of existing unsteady lifting problem in the time domain.

Hierarchical Behavior Control of Mobile Robot Based on Space & Time Sensor Fusion(STSF)

  • Han, Ho-Tack
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.314-320
    • /
    • 2006
  • Navigation in environments that are densely cluttered with obstacles is still a challenge for Autonomous Ground Vehicles (AGVs), especially when the configuration of obstacles is not known a priori. Reactive local navigation schemes that tightly couple the robot actions to the sensor information have proved to be effective in these environments, and because of the environmental uncertainties, STSF(Space and Time Sensor Fusion)-based fuzzy behavior systems have been proposed. Realization of autonomous behavior in mobile robots, using STSF control based on spatial data fusion, requires formulation of rules which are collectively responsible for necessary levels of intelligence. This collection of rules can be conveniently decomposed and efficiently implemented as a hierarchy of fuzzy-behaviors. This paper describes how this can be done using a behavior-based architecture. The approach is motivated by ethological models which suggest hierarchical organizations of behavior. Experimental results show that the proposed method can smoothly and effectively guide a robot through cluttered environments such as dense forests.

Improvement of Lift Dump on a Fighter-Type Wing at Approach Condition

  • Hwang, Soo-Jung;Lee, Il-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.33-45
    • /
    • 2005
  • The 1/9-scale model of a fighter-type configuration was tested in the Micro-Craft 8ft ${\times}$ 12ft wind tunnel facility. An abrupt lift dump was found at a certain range of angle of attack under the pre-scheduled approach configuration. To avoid a probable unsatisfactory flight behavior due to the lift dump, various aerodynamic devices were suggested. Extensive tests applying the cutoff leading edge flaps, boundary layer fences, saw tooth and vortex generators were performed with flow visualization as well as force and moment measurements. Test results showed that the origin of the lift dump was caused by the secondary boundary layer flow separation generated from the strong interaction between wing and flap. Various solutions for avoiding the unfavorable feature were suggested with the merits and demerits.

A Study on Design Method of Underground Space based on MPAM Theory (MPAM 이론에 의한 지하공간의 설계방법 연구)

  • Lee Wan-jae;Kim Tae-Hong
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.87-104
    • /
    • 2005
  • Rock masses represent natural systems that are inherently complex and in which multiple mechanisms occur. Rock engineering systems such as tunnel and slope interact with surrounding systems through an exchange of both mass and energy. Accordingly the complex nature of rock masses calls for a system approach, and the open nature of rock engineering even requires the engineering to be controlled by a system approach for surrounding environments. However, traditional methods cannot take all variables and their interactions into account and are limited to the system with single mechanisms. Therefore, they are not proper for a complex and open system, and also cannot portray the whole system. Thus, a system approach is indispensable to rock engineering for dealing with the whole of a complex and open system. In this paper Mechanism Path Analysis Methodology (MPAM) Is Introduced for a system approach to rock engineering. The analysis by the methodology gives us all the information of systems behavior in the context of the whole system in order to accomplish the optimum design in accordance with the project objectives and analysis purposes. As an application a conventional model for the evaluation of TBM tunneling performance system is analyzed by MPAM and the result is compared with that by a traditional method.

  • PDF

Conceptual Approach For Understanding Emotional Interaction Space Design (감성 인터랙션 공간디자인의 개념적 접근연구)

  • Jeung, Eun-Joo;Lee, Yeun-Sook
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.10a
    • /
    • pp.76-80
    • /
    • 2005
  • Digital technology makes changes of people's behavior style and characteristic of space in which people live. Therefore, we need to adjust conceptual meaning related to digital technology properly. For deriving emotional interactive space design, we need to understand following meanings: the meaning of interaction and interaction design, the meaning of emotion and emotional design, the meaning of space, emotional design, and interaction design in digital society. Consequently emotional interactive space design makes people satisfied with their five senses, communication with people increase and enable people to experience something new that they haven't experienced before transcending time and space.

  • PDF

A Fixed Point Approach to the Stability of Quadratic Equations in Quasi Normed Spaces

  • Mirmostafaee, Alireza Kamel
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.691-700
    • /
    • 2009
  • We use the fixed alternative theorem to establish Hyers-Ulam-Rassias stability of the quadratic functional equation where functions map a linear space into a complete quasi p-normed space. Moreover, we will show that the continuity behavior of an approximately quadratic mapping, which is controlled by a suitable continuous function, implies the continuity of a unique quadratic function, which is a good approximation to the mapping. We also give a few applications of our results in some special cases.

Benchmark Numerical Simulation on the Coupled Behavior of the Ground around a Point Heat Source Using the TOUGH-FLAC Approach (TOUGH-FLAC 기법을 이용한 점열원 주변지반의 복합거동에 대한 벤치마크 수치모사)

  • Dohyun Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • The robustness of a numerical method means that its computational performance is maintained under various modeling conditions. New numerical methods or codes need to be assessed for robustness through benchmark testing. The TOUGH-FLAC modeling approach has been applied to various fields such as subsurface carbon dioxide storage, geological disposal of spent nuclear fuel, and geothermal development both domestically and internationally, and the modeling validity has been examined by comparing the results with experimental measurements and other numerical codes. In the present study, a benchmark test of the TOUGH-FLAC approach was performed based on a coupled thermal-hydro-mechanical behavior problem with an analytical solution. The analytical solution is related to the temperature, pore water pressure, and mechanical behavior of a fully saturated porous medium that is subjected to a point heat source. The robustness of the TOUGH-FLAC approach was evaluated by comparing the analytical solution with the results of numerical simulation. Additionally, the effects of thermal-hydro-mechanical coupling terms, fluid phase change, and timestep on the computation of coupled behavior were investigated.