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Abstract

Navigation in environments that are densely cluttered with obstacles is still a challenge for Autonomous Ground Vehicles (AGVs),

especially when the configuration of obstacles is not known a priori. Reactive local navigation schemes that tightly couple the robot actions

to the sensor information have proved to be effective in these environments, and because of the environmental uncertainties, STSF(Space

and Time Sensor Fusion)-based fuzzy behavior systems have been proposed. Realization of autonomous behavior in mobile robots, using

STSF control based on spatial data fusion, requires formulation of rules which are collectively responsible for necessary levels of

intelligence. This collection of rules can be conveniently decomposed and efficiently implemented as a hierarchy of fuzzy-behaviors.

This

paper describes how this can be done using a behavior-based architecture. The approach is motivated by ethological models which suggest

hierarchical organizations of behavior. Experimental results show that the proposed method can smoothly and effectively guide a robot

through cluttered environments such as dense forests.
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I. Introduction

For mobile robots to operate efficiently in a human
environment, they need to be able to navigate efficiently and to
avoid collisions. Therefore, taking the safety factor into
consideration, “collision avoidance” would essentially form the
basic behavior of all behavior-based autonomous robots. The
vision sensing system has traditionally been used for collision
avoidance in mobile robots. It is cost effective and relatively
quick in response. Processing is not time consuming either. And
recently, with the reduction in size of video cameras and the
increase in computing speed of computers, the use of visual
sensing has become popular too. In what has become a fairly
well-researched approach to multi-sensor (sonar and vision)
based navigation for mobile robots, a robot is provided with an
environmental map and a path to follow. The important function
of vision-based processing in this case consists of “self-
localization.”

For literature on this approach, the reader is referred to [1],
[2], and [3]. In a different approach, as reported on by [4] and [5,
6], a robot is provided with sequences of images of the interior
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space. By comparing these prerecorded images with the camera
images taken during navigation, the robot is able to determine its
location. Other previous research contributions that are relevant
to mobile robot localization include [7], {€], [9], and [10].

In order to achieve autonomy, mobile robots must be capable
of achieving multiple goals whose priorities may change with
time. Thus, controllers should be designed to realize a number
of task-achieving behaviors that can be integrated to achieve
different control objectives. This requires formulation of a large
and complex set of fuzzy rules. In this situation a potential
limitation to the utility of the monolithic fuzzy controller
becomes apparent. Since the size of complete monolithic rule-
bases increases exponentially with the number of input variables
[11], multi-input systems can potentially suffer degradations in
real-time response. This is a critical issue for mobile robots
operating in dynamic surroundings. Hierarchical rule structures
can be employed to overcome this limitation by reducing the
rate of increase to linear [12,13].

This paper describes a hierarchical behavior-based control
architecture. It is structured as a hierarchy of fuzzy rule-bases
which enables distribution of intelligence amongst special
purpose fuzzy-behaviors. This structure is motivated by the
hierarchical nature of behavior as hypothesized in ethological
models. A fuzzy coordination scheme is also described that
employs weighted decision making based on contextual
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behavior activation. Performance is demonstrated by simulation
highlighting interesting aspects of the decision making process
which arise from behavior interaction.

The paper is organized as follows. Section II first presents
basic concepts of the behavior based system structure. Section
III represents the concept of STSF is derived and hierarchical
decomposition of mobile robot behavior. Section IV represents
coordinating fuzzy-behavior interactions. And Mobile robot
system and environment, and Obstacle description and
configuration are shown in section V. Observed performances
are shown in section VI. Finally section VI concludes the

current research and proposes further topics.

11. Behavior Based System Structure

Reactive behaviors are control systems that make up the
behavior based control system. Reactive behavior systems have
proven to be very effective in accomplishing many of the
complex tasks facing robotic systems today by decomposing
these tasks into simpler well-defined subtasks. These behaviors
can be implemented independently, which reduces behavioral
interference and system complexity. This independence is due to
their horizontal arrangement as illustrated in Fig. 1. These
models are also referred to as parallel and serial respectively.

. Ps) | +(\ ¢ K(s) G(s)

Fig. 1. Reactive (horizontal) Model
Since reactive systems are comprised of independent
behaviors, a mechanism is needed to determine one control
command. This mechanism is known as command arbitration,
which is a distinguishing characteristic as well as the toughest
problem of reactive behavior systems. Fig. 2 shows how each
behavior sends information to the command fusion block which
combines the information to create one output.

I

Fig. 2. Reactive Behavior Arbitration
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Various arbitration methods combine this information using
fusion that makes the behaviors either compete or cooperate for
control of the system. These methods will be described in more
detail in Section V.

II1. STSF-BASED HIERARCHICAL
BEHAVIOR CONTROL

A. STSF (Space and Time Sensor Fusion)

The STSF (Space and Time Sensor Fusion) scheme combines
the sensory information acquired at different instants from
different sensors to determine the measurement. It may expend
its applicability to the systems where the states at each instant
can be predicted as shown in Fig. 3.
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Fig. 3. Data processing for STSF.

Estimation of parameter block may provide the measurement
vector at each sampling moment. The blocks of verify the
significance and adjust weight are pre-processing stages for the
sensor fusion. After these steps, the previous data set will be
fused with the current data set, which provides a reliable and
accurate data set as the result of multi-sensor temporal fusion. In
the figure, the significance implies that how much the previous
data set is related to the current data. An arbitrary value of
significance may cause the problem to be complex. Therefore,
some people may consider whether it corresponds to the same
data or not, that is, 1 or 0. When the significance is 0, the weight
can be adjusted simply to 0. However, when the significance
equals 1, the adjustment of weight should be properly performed
to provide reliable and accurate data. The STSF can be
represented mathematically as follows[14]:
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Note that when each of sensor information can provide the
measurement vector, that is, the redundant case 7Si(j) can be
expanded as

TS, () =T; + Hiz;()) (2)

where Tj; represents the homogeneous transformation from the
location of the j-th measurement to the i-th measurement.
However, when the muiti-sensors are utilized in the
complementary mode, the transformation relationship cannot be
defined uniquely; instead it will be defined depending on the

data constructing algorithm from the measurements.

B. Behavior Hierarchy

The behavior control paradigm has grown out of an
amalgamation of ideas from ethology, control theory and
artificial intelligence [3, 4]. Motion control is decomposed into a
set of special-purpose behaviors that achieve distinct tasks when
subject to particular stimuli. Clever coordination of individual
behaviors results in emergence of more inteiligent behavior
suitable for dealing with complex situations. The paradigm was
Brooks [4] and

‘subsumption architecture’

initially proposed by realized as the
wherein a behavior system is
implemented as distributed finite state automata. Until recently
[5, 6, 7], most behavior controllers have been based on crisp
(non-fuzzy) data processing and binary logic-based reasoning.
In contrast to their crisp counterparts, fuzzy-behaviors are
synthesized as fuzzy rule-bases, i.e. collections of a finite set
of fuzzy if-then rules. Each behavior is encoded with a distinct
control policy governed by fuzzy inference. Thus, each fuzzy-
behavior is similar to the conventional fuzzy controller in that it
performs an inference mapping from some input space to some
output space. If X and Y are input and output universes of
discourse of a behavior with a rule-base of size n. the usual

fuzzy if-then rule takes the following form

IF x is Zl- THEN yis E,- (3)

\

where x and y represent input and output fuzzy linguistic
variables, respectively, and Zi and EI» (1 =1...n) are fuzzy
subsets representing linguistic values of x and y . Typically,
x refers to sensory data and y to actuator control signals.
The antecedent consisting of the proposition “x is Zi ” could
be replaced by a conjunction of similar propositions; the same
holds for the consequent “ y is §,» ”

The proposed architecture is a conceptual model of an
intelligent behavior system and its behavioral relationships.
Overall robot behavior is decomposed into a bottom-up
hierarchy of increased behavioral complexity in which activity

at a given level is dependent upon behaviors at the level(s)
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below. A collection of primitive behaviors resides at the lowest
level which we refer to as the primitive level. These are simple,
self-contained behaviors that serve a single purpose by operating
in a reactive or reflexive fashion.

They perform nonlinear mappings from different subsets of
the robot’s sensor suite to (typically, but not necessarily)
common actuators. Each exists in a state of solipsism, and alone,
would be insufficient for autonomous navigation tasks.
Primitive behaviors are building blocks for more intelligent
composite behaviors. They can be combined synergistically to
produce behavior(s) suitable for accomplishing goal-directed
operations.

A behavior hierarchy for indoor navigation might be
organized as in Fig. 4. Tt implies that goal-directed navigation
can be decomposed as a behavioral function of goal-seek and
route-follow. These behaviors can be further decomposed into
the primitive behaviors shown, with dependencies indicated by
the adjoining lines. Avoid-collision and wall-follow are self-
explanatory. The doorway behavior guides a robot through
narrow passageways in walls go-to-xy directs motion along a
straight line trajectory to a particular location. The circles
represent weights and activation thresholds of associated
primitive behaviors. As described below, fluctuations in these
weights are at the root of the intelligent coordination of
primitive behaviors. The hierarchy facilitates decomposition of
complex problems as well as run-time efficiency by avoiding the
need to evaluate rules from behaviors that do not apply.

Note that decomposition of behavior for a given mobile robot
system is not unique. Consequently, suitable behavior
repertoires and associated hierarchical arrangements are arrived
at following a subjective analysis of the system and the task

environment.

Goal-directed
Navigation

Route-foliow

Goal-seek

Go-to-xy ' Avoid-collision' Wall-follow

Fig. 4. Hierarchical decomposition of mobile robot behavior.

Doorway

IV. COORDINATING FUZZY-BEHAVIOR
INTERACTIONS

A. Degree of applicability
Complex interactions in the form of behavioral cooperation or

competition occur when more than one primitive behavior is
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active. These forms of behavior are not perfectly distinct they
are extremes along a continuum [8]. Coordination is achieved by
weighted STSF and behavior modulation embodied in a concept
called the degree of applicability (DOA) The DOA is a measure
of the instantaneous level of activation of a behavior and can be
thought of in ethological terms as a motivational tendency of the
behavior. Fuzzy rules of composite behaviors are formulated
such that the DOA, «; €[0,1], of primitive behavior j is
specified in the consequent of applicability rules of the form

IF xis 4, THEN @, is D, @

where Zi is defined as in (1). 5;’ is a fuzzy set specifying
the linguistic value (e.g. “high”) of «; for the situation
prevailing during the current control cycle. This feature allows
certain robot behaviors to influence the overall behavior to a

greater or lesser degree depending on the current situation.

B. The heading control and related behaviors

The control command for the heading control activity is the
heading angular change A@. This has to be defuzzified into an
odd number of symmetric fuzzy sets to represent possible
command alternatives depending on the intended control action.
Any reasonable number of fuzzy sets can be used; four fuzzy
sets were found to sufficiently represent the relative importance
of the command alternatives with the linguistic symbols Not
Acceptable (NA), Acceptable (A), Favored (F), and Highly
Favored (HF). The goal seeking structure of the fuzzy behavior
control system for heading control is illustrated in Fig. 5.

The five fuzzy sets are named: Large Right Turn (LRT),
Slight Right Turn (SRT), No Turn (NT), Slight Left Turn (SLT),
and Large Left Turn (LLT) as shown by the dashed lines of Fig.
6. Each behavior i assigns a relative importance to each
command alternative j by some parameter a; & [0, 1]; the larger
values correspond to higher importance. This parameter is also

expressed by fuzzy sets on the interval [0, 1].
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Fig. 5. The Fuzzy Behavior Control System for the Heading
Control Activity.
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V. Experimental Configuration

A. Mobile robot system and environment

After satisfactory simulation performance [14], the proposed
navigation control system has been implemented and tested in a
laboratory environment on a Pioneer-DX robot equipped with a
CCD camiera and ultrasonic sensor ring (Fig. 7) [15]. This robot,
which is manufactured by Activ Media Robotics, is a
differentially driven platform configured with two drive wheels
and one swivel caster for balance. Each wheel is driven
independently by a motor with 19.5:1 gear ratio which enables
the robot to drive at a maximum speed of 1.2 m/s and climb a
25% grade. The proposed system was prepared using fuzzy
TECH
implemented on the Pioneer-DX.

software, which generated C++ code that was

Fig. 7. Pioneer-DX mobile robot and active camera system.

Ultrasonic sensor is good in distance measurement of the
obstacles, but it also suffers from specular reflection and
insufficient directional resolution due to its wide beam—opening-
angle. So, we use a sensor fusion method to decide the distance
and width of obstacles and avoid them during the navigation.
Pioneer-DX examines whether measured value is data of
distance to real obstacle or distance to its shadow. If difference
of measured data by vision and ultrasonic sensor is within the
error tolerance, Pioneer-DX uses measured data by vision sensor
as distance to obstacle. Otherwise, Pioneer-DX uses measured

data by vision sensor as distance to obstacle.
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Fig. 8 depicts sensing coverage of vision and ultrasonic
sensor used this experiment. Ultrasonic sensor can detect
obstacles within 7m and Vision system can detect obstacles
within the range of between 130cm and 870cm.
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Fig. 8. Sensing coverage of vision and ultrasonic sensor.

B. Obstacle description and configuration

A dense forest in which trees become obstacles to robot
motion was chosen as the experimental environment. Such
obstacles are very difficult to navigate through because they are
relatively small with irregular spacing. Obstacles were simulated
by 1m height by 1xIm, 1x2m width box sections. These box
size scale appropriately to the vehicle size and accurately depict
the trunks of obstacle.

The configuration of these obstacles must be chosen carefully.
Firstly it is important for each obstacle configuration to have at
least one traversable path. There may be more than one
traversable path; however, an obstacle configuration with only
one traversable path is the most difficult because the robot must
be able to identify and navigate that one path. The existence of
multiple paths can serve to illustrate the decision making of the
algorithm by forcing the robot to choose a more straight path.
The path is considered traversable if it is wide enough for the
robot to negotiate and make appropriate turns.

Fig. 9. Shows that maximum matching error is within 4%.
Therefore, It can be seen that above vision system is proper to
apply to navigation. The mobile robot navigates along a corridor
and Hall with 6mX12m widths and with some obstacles as
shown in Fig. 10. It demonstrates that the mobile robot avoids
the obstacles intelligently and follows the corridor to the goal.

Obstacle

—i
(168.3, -19.3)

(b) Result of matching
Fig. 9. Experimental result of the vision system.

(a) Input image
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Fig. 10. Experimental environment of the PIONEER-DX.

VI. OBSERVED PERFORMANCE

This section presents a sample of the three simulations results
and applicability that show the performance of the proposed
control system. It starts by describing the configuration of
obstacles that the robot was to avoid.

A. NAVIGATION EXAMPLE

In order to demonstrate the operational aspects of the
controller in the simplest manner possible we consider only the
composite behavior — goal-seek. As illustrated in Fig. 4, its
effect arises from synergistic interaction between primitive
behaviors, go-to-xy and avoid-collision. When more behaviors
are involved the approach proceeds in a straightforward manner
by appending additional DOAs and any necessary antecedents to
applicability rules accordingly.

The experimented mobile robot is modeled after PIONEER-
DX as shown in Fig. 7, a custom-built base with a two-wheel
differential drive and two stabilizing casters. It is octagonal in
shape 65 cm tall and 40 c¢cm in width. The sensor suite includes
CCD camera, optical encoders on each driven wheel and 16
ultrasonic transducers arranged primarily on the front, sides, and
The
hypothetical indoor layout not unlike awarehouse or office

forward-facing obliques. simulated “world” is a
building. The initial state of the simulation is shown in Fig. 10
with mobile robot located at its docking station with pose
p:(o,o,%)f . Its task is to navigate to the goal located at (14m,
11m) marked by the X. The avoid-collision and go-to-xy
behaviors are each shown acting alone in Fig. 11(b) and Fig.
11(b) respectively.

Recall that these behaviors are only capable of exhibiting
their particular primitive roles. Thus, avoid-collision merely
displays cyclic collision-free motion in the immediate vicinity of
the robot’s initial location, while go-to-xy displays a taxic
reaction that propels the robot toward the goal irregardless of
obstacles in its path. Successful completion of the task, resulting
from adaptive coordination of the primitive behaviors, is shown

in Fig. 12.
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The mobile robot, pioneer-DX, navigates along a space with
6mX12m widths and with some obstacles as shown in Fig. 12. It
demonstrates that the mobile robot avoids the obstacles
intelligently and navigates the space to the goal. In Fig. 13, the
behavioral interaction during the run is shown as a time history
of the DOAs of each primitive behavior. The interaction
dynamics shows evidence of brief bouts of competition
(overlapping oscillations) and cooperation with varying levels of
dominance. Initially, avoid-collision has the dominant
influence over the robot due to the close proximity of walls at
the docking station.

It virtually maintains dominance throughout the task due to
the relatively uniform clutter in the environment. The first bout
of competition corresponds to the robot’s approach toward the
obstacle located at (10, 4); a second bout occurs as it enters the
goal room. Elsewhere, applicabilities vary continuously
reflecting levels of activation recommended by the behavior
control system,

Fig. 14 presents additional experimental results when the
robot navigates the same as in Fig. 12. It shows the data plot of
the robot localization error according to the motion information
of mobile robot.
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Fig. 14. Position and orientation estimation of a mobile robot.

VII. Conclusion

In this paper, STSF-based fuzzy behavior system was
introduced. The effectiveness of fuzzy-behavior was
demonstrated through the preliminary and navigation
experiments. A fuzzy control algorithm for both obstacle
avoidance and path planning is proposed so that it enables the
mobile robot to reach to target point under the unknown
environments safely and autonomously.

The hierarchy of fuzzy-behaviors provides an efficient
approach to controlling mobile robots. Its practical utility lies in
the decomposition of overall behavior into sub-behaviors that
are activated only when applicable. When conditions for
activation of a single behavior (or several) are satisfied, there is
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no need to process rules from behaviors that do not apply. This
would result in unnecessary consumption of computational
resources and possible introduction of “noise” into the decision-
making process. The modularity and flexibility of the approach,
coupled with its mechanisms for weighted decision making,
makes it a suitable framework for modeling and controlling
situated adaptation in autonomous robots. To date, simulaticns
have been used to predict the performance of a real robot on
which real-time experiments are currently being prepared.

To show the efficiency of proposed method, real experiments
are performed. The experimental results show that the mobile
robot can navigate to the target point safely under unknown
and also can obstacles

environments avoid moving

autonomously.
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