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ABSTRACT. We use the fixed alternative theorem to establish Hyers—Ulam—Rassias stabil-
ity of the quadratic functional equation where functions map a linear space into a complete
quasi p-normed space. Moreover, we will show that the continuity behavior of an approx-
imately quadratic mapping, which is controlled by a suitable continuous function, implies
the continuity of a unique quadratic function, which is a good approximation to the map-
ping. We also give a few applications of our results in some special cases.

1. Introduction and preliminaries

In 1940, S. M. Ulam [25] gave a wide ranging talk before the Mathematics Club
of the University of Wisconsin in which he discussed a number of important un-
solved problems. Among those was the following question concerning the stability
of homomorphisms:

Let (Gy,%) be a group and (Gsg,<,d) be a metric group with the metric d. Given
€ > 0, does there exists a §. > 0 such that if a mapping h : G; — G5 satisfies the
inequality

d(h(z *y), h(z) o h(y)) < d. Vz,y € Gy,

then there is a mapping H : Gi — G5 such that for each z,y € Gy, H(x xy) =
H(z) o H(y) and d(h(z), H(z)) < €?

In the next year, D. H. Hyers [12] gave an affirmative answer to the question
of Ulam. Hyers’ theorem was generalized by T. Aoki [2] for additive mappings and
by Th. M. Rassias [22] for linear mappings by considering an unbounded Cauchy
difference. The concept of the Hyers—Ulam—Rassias stability was originated from
Th. M. Rassias’ paper [22] for the stability of the linear mappings and its importance
in the proof of further results in functional equations. In 1994, a generalization
of Th.M. Rassias’ theorem was obtained by Gavruta [11], who replaced the bound
e(|lz||”+1|y]|P) by a general control function ¢(x,y). During the last decades several
stability problems for various functional equations have been investigated by many
mathematicians; we refer the reader to [9], [13], [16], [17], [18], [23] and references
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therein.
The functional equation
(1.1) fla+y) + fle—y)=2f(z) +2f(y)

is called the quadratic functional equation, since the function f(z) = 22 is a solution

of the functional equation. Every solution of the quadratic functional equation is
said to be a quadratic mapping. For example, in any Hilbert space (H,< ., . >),
f(z) =< z,z > defines a quadratic mapping. The first stability theorem for the
quadratic functional equation was proved F. Skof [24] for a mapping from a normed
space X into a Banach space Y satisfying the inequality || f(z+y)+ f(x—y)—2f(z)—
2f(y)| < e for some ¢ > 0. P. W. Cholewa [6] extended Skof ’s theorem by replacing
X by an abelian group G. This result was later generalized by S. Czerwik [7] in the
spirit of Hyers—Ulam—Rassias. He also proved the stability of quadratic equation of
Pexider type [8]. Recently, the stability problem of the quadratic equation has been
investigated by a number of mathematicians, see [13], [14], [15], [19] and references
therein.

Definition 1.1. The pair (X, d) is called a generalized complete metric space if X
is a nonempty set and d : X2 — [0, 00| satisfies the following conditions:

(a) d(z,y) > 0 and the equality holds if and only if x = y,
(b) d(z,y) = d(y, z),

(c) d(z,z) < d(z,y) +d(y, 2),

(d) every d-Cauchy sequence in X is d-convergent.

Note that the distance between two points in a generalized metric space is permitted
to be infinity.

Definition 1.2. Let (X,d) be a generalized complete metric space. A mapping
A : X — X satisfies a Lipschitz condition with Lipschitz constant L > 0 if

d(A(z), Ay)) < Ld(z,y) (z,y € X).

If L < 1, then A is called a strictly contractive operator.

In 2003, Radu [20] employed the following result, due to Diaz and Margolis
[10], to prove the stability of Cauchy additive functional equation. Using such an
elegant idea, several authors applied the method to investigate the stability of some
functional equations, see [4], [5], [14], [21].

Proposition 1.3 (The fixed point alternative principle). Suppose that a complete
generalized metric space (E€,d) (i.e., one for which d may assume infinite values)
and a strictly contractive mapping J : € — £ with the Lipschitz constant 0 < L < 1
are given. Then, for a given element x € £, exactly one of the following assertions
is true: either
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(a) d(J"z, J" z) = 0o for allm >0 or

(b) there exists some integer k such that d(J"x, J"Tlz) < oo for all n > k.
Actually, if (b) holds, then the sequence {J"x} is convergent to a fized point z* of
J and

(bl) z* is the unique fized point of J in F :={y € £,d(J*z,y) < c0};

(b2) d(y,z*) < w forally € F.

Remark 1.4. The fixed point z*, if it exists, is not necessarily unique in the whole
space &; it may depend on z. Actually, if (b) holds, then (F,d) is a complete metric
space and J(F) C F. Therefore the properties (b1) and (b2) are follows from “The
Banach fixed point Theorem”.

Definition 1.5. A quasi-norm on a real vector space X is a function z — |||z]||
from X to [0, 00) which satisfies

(i) |||=||| > O for every = # 0 in X,
(i) ||[tz]|] = |¢]-]||=]|] for every t € R and z € X,
(iii) there is a k > 1 such that |||z + y||| < k(|||z||| + |||yl|]) for every z,y € X.

Aoki [1] (see also [3]) has shown that every quasi-normed space (X, ||| . |||) admits
an equivalent quasi-norm || . || such that for some 0 < p <1,

(1.2) e+ yll” <[lz]|” +[ly[[" (z,y € X).

In this case, (X, || ||) is called a quasi p-normed space. In special case, when p = 1,
(X, |l - ||) turns into a normed linear space.

In the next section, we employ fixed point alternative theorem (Proposition 1.3)
to establish Hyers-Ulam—Rassias stability of the quadratic functional equation (1.1)
in the setting of quasi p-normed spaces. In fact, we will show that if a function f
from a linear space X to a complete p-normed space Y satisfies the inequality

If(@+y) + fle—y) = 2f(z) = 2f Wl < p(z,y) (2, € X)

for suitable control function ¢, then f can be suitably approximated by a unique
quadratic function @ : X — Y. In section 3, we will show that, for each z € X, the
continuity of s — f(sz) and s — (s, sx) guarantee the continuity of s — Q(sx).
We also give some applications of our results in special cases.

2. Stability of quadratic functional equations

Throughout the remainder of this paper, unless otherwise stated, we will assume
1

that 0 < p < 1and g = —, X is real vector spaces and Y is a complete quasi p-norm
p

space. Let

(2.1) Df(z,y) = flx+y) + fle —y) = 2f(z +y) = 2f(z —y).



694 Alireza Kamel Mirmostafaee

We start with the following lemma.

Lemma 2.1. Let ¢ : X — [0,00) be a function. Let € ={g: X — Y} and define
d(g,h) =inf{a > 0:||g(z) — h(2)|| < a®yp(x) Vze X} (g,h€f).

Then d is a generalized complete metric on E.

Proof. Let g,h,k € £, d(g,h) < a1 and d(h, k) < ag. Then
lg(z) — h(z)]| < af(z) and |[|A(z) — k(z)|| < ad(2),
for each x € X. It follows that

lg(z) = k()|

IN

llg(x) — h(2)[|P + [|h(x) — k()|
(a1 + as) (¢(x))p (z € X).

IN

Therefore d(g, k) < aj; + as. This proves the triangle inequality for d. The rest of
the proof is similar to the proof of the main result of [20]. g

Theorem 2.2. Let p: X x X — [0,00) and [ : X — 'Y satisfy the inequality
(2.2) IDf ()| < ol@y) (2y € X).

If for some a < 4,

(2.3) o2z, 2x) < ap(z, ) (x € X)

and lim,, o, 272" p(2"x,2"y) = 0 for all x,y in X, then there exists a unique
quadratic mapping Q : X — Y such that

(2.4) 10() - f@)l < 2@ (e x),

(4» — ap)a
Proof. Put & =y in (2.2), then we have
(2.5) £ (22) = 22 f(2)]| < p(x,2) (2 € X).
Let £ ={g: X — Y}. By Lemma 2.1,
d(g,h) =inf{a > 0: ||g(z) — h(2)|| < alp(z,z),Vz € X} (9,h €E)

defines a complete generalized metric on €. Define J : £ — & by J(g)(z) = 272¢(2x)
for each g € £ and z € X. Let d(g,h) < a, by the definition,

lg(z) = h(2)]] < ap(z,z) (z € X).
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According to (2.3), for each z € X,

17 (g)(z) = J(h) ()]

127%9(22) — 272h(22)||
27 2a%p(2x, 2x)

(%)aqap(x,x).

IA

IN

Hence, by the definition, d(J(g), J(h)) < (%)p a. Therefore

a\P

a(I(g),J() < (7)) dg.h) (9.he&).

@
This means that J is a contractive mapping with Lipschitz constant L = (Z)p < 1.

1
By (2.5), d(f,J(f)) < (2—2)7’, therefore, by Proposition 1.3, J has a unique fixed
point @ : X — Y in the set F = {g € £ : d(f,g) < oo}, where @ is defined by

(2.6) Qz) = nlggo J(f)(x) = 7Lh_}ng@ 272 f(2"x) (z € X).
Moreover,
a(f, J(f)) 4 1
df, Q) = 1-L = 1_4-pap  4p _qp

This means that (2.4) holds. According to (2.6),
DQ(z,y) = nh_)n;o 27 Df(2"x, 2"y) (x,y € X).
Replace x,y by 2™z, 2™y respectively in (2.2) to get
1272 Df(2"x,2"y)|| < 272" (2", 2")  (z,y € X).

By our assumption lim,, ., 272"p(2"z, 2"y) = 0, it follows that DQ(z,y) = 0 for
all z,y € X. Hence @ is a quadratic function. To prove the uniqueness assertion,
let us assume that there exists a quadratic function S : X — Y which satisfies (2.4).
Then S is a fixed point of J in F. However, by Proposition 1.3, J has only one
fixed point in F, hence S = Q. O

By a modification in the proof of Theorem 2.2, one can prove the following result:

Theorem 2.3. Let ¢ : X x X — [0,00) be a function. Let f : X — Y satisfy the
inequality

IDf(z.y)ll < e(z,y) (z,y € X).
If for some o > 4,

r X
-, =

5 2) <ap(r,z) (zeX)

ap(
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lim,, 00 22" (27", 27"y) = 0 for all z,y in X, then there exists a unique quadratic
mapping Q : X =Y such that

10() - f@)l| < 2@ (e x),

(ap — 4p)q
3. Continuity behavior of quadratic mappings

In this section, we investigate continuity of quadratic mappings in quasi p-
normed. In fact, we will show that under some conditions on Theorem 2.2 (or
Theorem 2.3), the quadratic mapping s — Q(sx) is continuous. It follows that in
such a case, Q(rz) = r?Q(z) for each z € X and r € R.

We need to the following result which can be easily proved by induction.

Lemma 3.1. Let Q : X — Y be a quadratic function, then Q(rz) = r?*Q(x) for
each © € X and rational number r.

Now, we are ready to mention the main result of this section.

Theorem 3.2. Let the conditions of Theorem 2.2 hold. If for each x € X, the
functions

R - Y and R — [0, 00)
s = f(sx) s+ @(sx, sx)

are continuous, then for each x € X, s — Q(sz) from R to Y is continuous and
Q(sz) = s?Q(z) for each x € X and s € R.

Proof. Fix z € X and sg € R. Take ng large enough so that

a\™ € a\™ o(spx, Sox) €

Since a < 4 such a choice is possible. By the continuity of maps s — f(2"sxz) and
s — p(sx, sx) at sg, we can find some § > 0 such that

I7(@msa) = F@son) < 5

(3.2) 0<|s—so|<d= .
lp(sz, sz) — @(soz, soz)| < (47 — a?)

Let |s — so| < . Then

IQ(s2) ~ Qsom)| | = [|27270Q(2"s) — 220 Q(2"s0)
< 9720 (|[Q(2s) — F(2sx)|IP 4 [|F(20sw) — F(2s0a) P

(3.3) @ s0r) — Q2 s02) )
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P
By (3.2), the second term of the right hand side of (3.3) is less than % Since for
all s € R,

B 1 @(2m0sz, 20 sx) a\™ (s, sT)
3.4) 2720|Q(2"0sx) — f(2M0sa)|| < —. 2 T < (2) 0 2
(3.4) 1Q(2" sz) = f(2"s2)l| < oo (@ —ar)” = (4> (4 — ar)?”’

p
by (3.1), the last term of the right hand side of the inequality (3.3) is less than %
By (3.1), (3.2) and (3.4)

22| Q(2™sa) — f(2%sa)|| < (“)no{mm’ﬁ_if)‘f’w)' +f§°f’§§fq)}

€ e 2
61 ' 69 67

IA
|
+
|

Hence,
2P b gP P »
-+ <én.
6 * 3 + 6
Here we used the fact that p < 1. The above inequality proves continuity of s —
Q(sx). By Lemma 3.1, Q(rx) = r2Q(z) for every rational number r. Let s be a real
number, then there exists a sequence {r,} of rational numbers such that r,, — s.
By the continuity of ¢t — Q(tz), for every z € X,
Q(sz) = lim Q(rpz) = lim 72Q(z) = s*Q(x).
n—oo

n—oo

[s — s0| < 0 = ||Q(s2) — Q(spx)|]P <

This completes the proof of the Theorem. O

The proof of the following result is similar to that in Theorem 3.2, hence it is
omitted.

Theorem 3.3. Let conditions of Theorem 2.3 hold. If for each v € X, the functions
s— f(sx) and s+ @(sz,sz)

are continuous, then the function s — Q(sx) is continuous for each x € X and
Q(sz) = s*Q(z) for each x € X and s € R.

Corollary 3.4. Let ¢ : X x X — [0,00) be a mapping such that either

i) for some a < 4, p(2z,2x) < ap(x,x) for allx € X and
¥ 4
for each z,y € X, lim,,_,o 272" (2"x,2"y) =0 or

(ii) for some a >4, ap(z,z) < ¢(2x,2x) for all v € X and
for each z,y € X, lim,,_,o 22"¢(27"x,27"y) = 0.

Let f: X =Y satisfy the inequality

(3.5) IDf (@, y)|| < p(2,y)
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for each x,y € X. Then there exists a unique quadratic mapping @ : X — Y such
that

(3.6) 17() - Q@) < 220 (e x).

aP _4p|q

Moreover, if the mappings s — f(st) and s — @(sx,sx) are continuous, then s —
Q(sx) is continuous and Q(sx) = s2Q(x) for each s €R and x € X.

Proof. If (i) holds, then conditions of Theorem 2.2 are fulfilled. If (ii) holds, then
the hypotheses of Theorem 2.3 are satisfied. In either case, by the above mentioned
theorems, we can find a quadratic mapping @ : X — Y such that (3.6) holds. If the
mappings s — f(st) and s — (s, sx) are continuous, then we apply Theorems
3.2 and 3.3 to get to the last assertions of the theorem. (I

Corollary 3.5. Let (X, ||| . |||) be a normed space. Let for some e > 0 and positive
real number r # 2, f: X — Y satisfy the inequality

1Df @ )lI < (Illalll” + lylll") ~ (w,y € X).
Then there is a unique continuous quadratic mapping Q : X — 'Y such that

17() - Q)| < |22|_|2”||

and Q(sz) = s*Q(x) for each s € R and x € X.

Proof. Apply Corollary 3.4 (i) for « = 2 and ¢(z,y) = €<|||x\|\T + |Hy|||r) for each
z,y € X. ([l

Corollary 3.6. Let for somee >0, f: X =Y satisfy the inequality
IDf(z,9)l| <& (z,y € X).

Then there is a unique continuous quadratic mapping Q : X — 'Y such that

€
_ < -
17 = QI < 1,
and Q(sx) = s2Q(x) for each s € R and x € X.
Proof. Apply Corollary 3.4 for ¢(x,y) = ¢ for each z,y € X and o = 1. a
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