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Abstract. We use the fixed alternative theorem to establish Hyers–Ulam–Rassias stabil-

ity of the quadratic functional equation where functions map a linear space into a complete

quasi p-normed space. Moreover, we will show that the continuity behavior of an approx-

imately quadratic mapping, which is controlled by a suitable continuous function, implies

the continuity of a unique quadratic function, which is a good approximation to the map-

ping. We also give a few applications of our results in some special cases.

1. Introduction and preliminaries

In 1940, S. M. Ulam [25] gave a wide ranging talk before the Mathematics Club
of the University of Wisconsin in which he discussed a number of important un-
solved problems. Among those was the following question concerning the stability
of homomorphisms:
Let (G1, ∗) be a group and (G2, ⋄, d) be a metric group with the metric d. Given
ε > 0, does there exists a δε > 0 such that if a mapping h : G1 → G2 satisfies the
inequality

d
(
h(x ∗ y), h(x) ⋄ h(y)

)
< δε ∀x, y ∈ G1,

then there is a mapping H : G1 → G2 such that for each x, y ∈ G1, H(x ∗ y) =
H(x) ⋄H(y) and d

(
h(x),H(x)

)
< ε?

In the next year, D. H. Hyers [12] gave an affirmative answer to the question
of Ulam. Hyers’ theorem was generalized by T. Aoki [2] for additive mappings and
by Th. M. Rassias [22] for linear mappings by considering an unbounded Cauchy
difference. The concept of the Hyers–Ulam–Rassias stability was originated from
Th. M. Rassias’ paper [22] for the stability of the linear mappings and its importance
in the proof of further results in functional equations. In 1994, a generalization
of Th.M. Rassias’ theorem was obtained by Găvruţă [11], who replaced the bound
ε(∥x∥p+∥y∥p) by a general control function φ(x, y). During the last decades several
stability problems for various functional equations have been investigated by many
mathematicians; we refer the reader to [9], [13], [16], [17], [18], [23] and references
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therein.
The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)(1.1)

is called the quadratic functional equation, since the function f(x) = x2 is a solution
of the functional equation. Every solution of the quadratic functional equation is
said to be a quadratic mapping. For example, in any Hilbert space (H,< . , . >),
f(x) =< x, x > defines a quadratic mapping. The first stability theorem for the
quadratic functional equation was proved F. Skof [24] for a mapping from a normed
spaceX into a Banach space Y satisfying the inequality ∥f(x+y)+f(x−y)−2f(x)−
2f(y)∥ ≤ ϵ for some ϵ > 0. P. W. Cholewa [6] extended Skof ’s theorem by replacing
X by an abelian group G. This result was later generalized by S. Czerwik [7] in the
spirit of Hyers–Ulam–Rassias. He also proved the stability of quadratic equation of
Pexider type [8]. Recently, the stability problem of the quadratic equation has been
investigated by a number of mathematicians, see [13], [14], [15], [19] and references
therein.

Definition 1.1. The pair (X, d) is called a generalized complete metric space if X
is a nonempty set and d : X2 → [0,∞] satisfies the following conditions:

(a) d(x, y) ≥ 0 and the equality holds if and only if x = y,

(b) d(x, y) = d(y, x),

(c) d(x, z) ≤ d(x, y) + d(y, z),

(d) every d-Cauchy sequence in X is d-convergent.

Note that the distance between two points in a generalized metric space is permitted
to be infinity.

Definition 1.2. Let (X, d) be a generalized complete metric space. A mapping
Λ : X → X satisfies a Lipschitz condition with Lipschitz constant L ≥ 0 if

d(Λ(x),Λ(y)) ≤ Ld(x, y) (x, y ∈ X).

If L < 1, then Λ is called a strictly contractive operator.

In 2003, Radu [20] employed the following result, due to Diaz and Margolis
[10], to prove the stability of Cauchy additive functional equation. Using such an
elegant idea, several authors applied the method to investigate the stability of some
functional equations, see [4], [5], [14], [21].

Proposition 1.3 (The fixed point alternative principle). Suppose that a complete
generalized metric space (E , d) (i.e., one for which d may assume infinite values)
and a strictly contractive mapping J : E → E with the Lipschitz constant 0 < L < 1
are given. Then, for a given element x ∈ E, exactly one of the following assertions
is true: either
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(a) d(Jnx, Jn+1x) = ∞ for all n ≥ 0 or
(b) there exists some integer k such that d(Jnx, Jn+1x) <∞ for all n ≥ k.
Actually, if (b) holds, then the sequence {Jnx} is convergent to a fixed point x∗ of
J and
(b1) x∗ is the unique fixed point of J in F := {y ∈ E , d(Jkx, y) <∞};

(b2) d(y, x∗) ≤ d(y, Jy)

1− L
for all y ∈ F .

Remark 1.4. The fixed point x∗, if it exists, is not necessarily unique in the whole
space E ; it may depend on x. Actually, if (b) holds, then (F , d) is a complete metric
space and J(F) ⊂ F . Therefore the properties (b1) and (b2) are follows from “The
Banach fixed point Theorem”.

Definition 1.5. A quasi-norm on a real vector space X is a function x � |||x|||
from X to [0,∞) which satisfies

(i) |||x||| > 0 for every x ̸= 0 in X,

(ii) |||tx||| = |t|.|||x||| for every t ∈ R and x ∈ X,

(iii) there is a k ≥ 1 such that |||x+ y||| ≤ k(|||x|||+ |||y|||) for every x, y ∈ X.

Aoki [1] (see also [3]) has shown that every quasi-normed space (X, ||| . |||) admits
an equivalent quasi-norm || . || such that for some 0 < p ≤ 1,

(1.2) ||x+ y||p ≤ ||x||p + ||y||p (x, y ∈ X).

In this case, (X, || ||) is called a quasi p-normed space. In special case, when p = 1,
(X, ||| . |||) turns into a normed linear space.

In the next section, we employ fixed point alternative theorem (Proposition 1.3)
to establish Hyers–Ulam–Rassias stability of the quadratic functional equation (1.1)
in the setting of quasi p-normed spaces. In fact, we will show that if a function f
from a linear space X to a complete p-normed space Y satisfies the inequality

||f(x+ y) + f(x− y)− 2f(x)− 2f(y)|| ≤ φ(x, y) (x, y ∈ X)

for suitable control function φ, then f can be suitably approximated by a unique
quadratic function Q : X → Y . In section 3, we will show that, for each x ∈ X, the
continuity of s 7→ f(sx) and s 7→ φ(sx, sx) guarantee the continuity of s 7→ Q(sx).
We also give some applications of our results in special cases.

2. Stability of quadratic functional equations

Throughout the remainder of this paper, unless otherwise stated, we will assume

that 0 < p ≤ 1 and q =
1

p
, X is real vector spaces and Y is a complete quasi p-norm

space. Let

(2.1) Df(x, y) = f(x+ y) + f(x− y)− 2f(x+ y)− 2f(x− y).
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We start with the following lemma.

Lemma 2.1. Let ψ : X → [0,∞) be a function. Let E = {g : X → Y } and define

d(g, h) = inf{a > 0 : ||g(x)− h(x)|| ≤ aqψ(x) ∀x ∈ X} (g, h ∈ E).

Then d is a generalized complete metric on E .
Proof. Let g, h, k ∈ E , d(g, h) < a1 and d(h, k) < a2. Then

||g(x)− h(x)|| ≤ aq1ψ(x) and ||h(x)− k(x)|| ≤ aq2ψ(x),

for each x ∈ X. It follows that

||g(x)− k(x)||p ≤ ||g(x)− h(x)||p + ||h(x)− k(x)||p

≤ (a1 + a2)
(
ψ(x)

)p

(x ∈ X).

Therefore d(g, k) ≤ a1 + a2. This proves the triangle inequality for d. The rest of
the proof is similar to the proof of the main result of [20]. �

Theorem 2.2. Let φ : X ×X → [0,∞) and f : X → Y satisfy the inequality

(2.2) ||Df(x, y)|| ≤ φ(x, y) (x, y ∈ X).

If for some α < 4,

φ(2x, 2x) ≤ αφ(x, x) (x ∈ X)(2.3)

and limn→∞ 2−2nφ(2nx, 2ny) = 0 for all x, y in X, then there exists a unique
quadratic mapping Q : X → Y such that

||Q(x)− f(x)|| ≤ φ(x, x)

(4p − αp)q
(x ∈ X).(2.4)

Proof. Put x = y in (2.2), then we have

||f(2x)− 22f(x)|| ≤ φ(x, x) (x ∈ X).(2.5)

Let E = {g : X → Y }. By Lemma 2.1,

d(g, h) = inf{a > 0 : ||g(x)− h(x)|| ≤ aqφ(x, x),∀x ∈ X} (g, h ∈ E)

defines a complete generalized metric on E . Define J : E → E by J(g)(x) = 2−2g(2x)
for each g ∈ E and x ∈ X. Let d(g, h) < a, by the definition,

||g(x)− h(x)|| ≤ aqφ(x, x) (x ∈ X).
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According to (2.3), for each x ∈ X,

||J(g)(x)− J(h)(x)|| = ||2−2g(2x)− 2−2h(2x)||
≤ 2−2aqφ(2x, 2x)

≤
(α
4

)
aqφ(x, x).

Hence, by the definition, d(J(g), J(h)) ≤
(α
4

)p

a. Therefore

d(J(g), J(h)) ≤
(α
4

)p

d(g, h) (g, h ∈ E).

This means that J is a contractive mapping with Lipschitz constant L = (
α

4
)p < 1.

By (2.5), d(f, J(f)) ≤ (
1

22
)p, therefore, by Proposition 1.3, J has a unique fixed

point Q : X → Y in the set F = {g ∈ E : d(f, g) <∞}, where Q is defined by

(2.6) Q(x) := lim
n→∞

Jn(f)(x) = lim
n→∞

2−2nf(2nx) (x ∈ X).

Moreover,

d(f,Q) ≤ d(f, J(f))

1− L
≤ 4−p

1− 4−pαp
=

1

4p − αp
.

This means that (2.4) holds. According to (2.6),

DQ(x, y) = lim
n→∞

2−2nDf(2nx, 2ny) (x, y ∈ X).

Replace x, y by 2nx, 2ny respectively in (2.2) to get

||2−2nDf(2nx, 2ny)|| ≤ 2−2nφ(2n, 2ny) (x, y ∈ X).

By our assumption limn→∞ 2−2nφ(2nx, 2ny) = 0, it follows that DQ(x, y) = 0 for
all x, y ∈ X. Hence Q is a quadratic function. To prove the uniqueness assertion,
let us assume that there exists a quadratic function S : X → Y which satisfies (2.4).
Then S is a fixed point of J in F . However, by Proposition 1.3, J has only one
fixed point in F , hence S ≡ Q. �

By a modification in the proof of Theorem 2.2, one can prove the following result:

Theorem 2.3. Let φ : X ×X → [0,∞) be a function. Let f : X → Y satisfy the
inequality

||Df(x, y)|| ≤ φ(x, y) (x, y ∈ X).

If for some α > 4,

αφ(
x

2
,
x

2
) ≤ αφ(x, x) (x ∈ X)
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limn→∞ 22nφ(2−nx, 2−ny) = 0 for all x, y in X, then there exists a unique quadratic
mapping Q : X → Y such that

||Q(x)− f(x)|| ≤ φ(x, x)

(αp − 4p)q
(x ∈ X).

3. Continuity behavior of quadratic mappings

In this section, we investigate continuity of quadratic mappings in quasi p-
normed. In fact, we will show that under some conditions on Theorem 2.2 (or
Theorem 2.3), the quadratic mapping s 7−→ Q(sx) is continuous. It follows that in
such a case, Q(rx) = r2Q(x) for each x ∈ X and r ∈ R.
We need to the following result which can be easily proved by induction.

Lemma 3.1. Let Q : X → Y be a quadratic function, then Q(rx) = r2Q(x) for
each x ∈ X and rational number r.

Now, we are ready to mention the main result of this section.

Theorem 3.2. Let the conditions of Theorem 2.2 hold. If for each x ∈ X, the
functions

R → Y and R → [0,∞)

s 7→ f(sx) s 7→ φ(sx, sx)

are continuous, then for each x ∈ X, s 7−→ Q(sx) from R to Y is continuous and
Q(sx) = s2Q(x) for each x ∈ X and s ∈ R.
Proof. Fix x ∈ X and s0 ∈ R. Take n0 large enough so that

(3.1)
(α
4

)n0

<
ε

6q
and

(α
4

)n0 φ(s0x, s0x)(
4p − αp

)q <
ε

6q
.

Since α < 4 such a choice is possible. By the continuity of maps s 7→ f(2nsx) and
s 7−→ φ(sx, sx) at s0, we can find some δ > 0 such that

(3.2) 0 < |s− s0| < δ ⇒

{
||f(2n0sx)− f(2n0s0x)|| <

ε

3q
|φ(sx, sx)− φ(s0x, s0x)| <

(
4p − αp

)q
Let |s− s0| < δ. Then

||Q(sx)−Q(s0x)||p = ||2−2n0Q(2n0sx)− 2−2n0Q(2n0s0x)||p

≤ 2−2n0p
(
||Q(2n0sx)− f(2n0sx)||p + ||f(2n0sx)− f(2n0s0x)||p

+ ||f(2n0s0x)−Q(2n0s0x)||p
)
.(3.3)
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By (3.2), the second term of the right hand side of (3.3) is less than
εp

3
. Since for

all s ∈ R,

(3.4) 2−2n0 ||Q(2n0sx)− f(2n0sx)|| ≤ 1

4n0
.
φ(2n0sx, 2n0sx)(

4p − αp
)q ≤

(α
4

)n0

.
φ(sx, sx)(
4p − αp

)q ,
by (3.1), the last term of the right hand side of the inequality (3.3) is less than

εp

6
.

By (3.1), (3.2) and (3.4)

2−2n0 ||Q(2n0sx)− f(2n0sx)|| ≤
(α
4

)n0
{ |φ(sx, sx)− φ(s0x, s0x)|(

4p − αp
)q +

φ(s0x, s0x)(
4p − αp

)q }
≤ ε

6q
+

ε

6q
=

2ε

6q
.

Hence,

|s− s0| < δ ⇒ ||Q(sx)−Q(s0x)||p <
2p εp

6
+
εp

3
+
εp

6
< εp.

Here we used the fact that p ≤ 1. The above inequality proves continuity of s 7→
Q(sx). By Lemma 3.1, Q(rx) = r2Q(x) for every rational number r. Let s be a real
number, then there exists a sequence {rn} of rational numbers such that rn → s.
By the continuity of t 7→ Q(tx), for every x ∈ X,

Q(sx) = lim
n→∞

Q(rnx) = lim
n→∞

r2nQ(x) = s2Q(x).

This completes the proof of the Theorem. �
The proof of the following result is similar to that in Theorem 3.2, hence it is

omitted.

Theorem 3.3. Let conditions of Theorem 2.3 hold. If for each x ∈ X, the functions

s 7−→ f(sx) and s 7−→ φ(sx, sx)

are continuous, then the function s 7−→ Q(sx) is continuous for each x ∈ X and
Q(sx) = s2Q(x) for each x ∈ X and s ∈ R.

Corollary 3.4. Let φ : X ×X → [0,∞) be a mapping such that either

(i) for some α < 4, φ(2x, 2x) ≤ αφ(x, x) for all x ∈ X and
for each x, y ∈ X, limn→∞ 2−2nφ(2nx, 2ny) = 0 or

(ii) for some α > 4, αφ(x, x) ≤ φ(2x, 2x) for all x ∈ X and
for each x, y ∈ X, limn→∞ 22nφ(2−nx, 2−ny) = 0.

Let f : X → Y satisfy the inequality

(3.5) ||Df(x, y)|| ≤ φ(x, y)
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for each x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such
that

(3.6) ||f(x)−Q(x)|| ≤ φ(x, x)

|αp − 4p|q
(x ∈ X).

Moreover, if the mappings s 7→ f(st) and s 7→ φ(sx, sx) are continuous, then s 7→
Q(sx) is continuous and Q(sx) = s2Q(x) for each s ∈ R and x ∈ X.

Proof. If (i) holds, then conditions of Theorem 2.2 are fulfilled. If (ii) holds, then
the hypotheses of Theorem 2.3 are satisfied. In either case, by the above mentioned
theorems, we can find a quadratic mapping Q : X → Y such that (3.6) holds. If the
mappings s 7→ f(st) and s 7→ φ(sx, sx) are continuous, then we apply Theorems
3.2 and 3.3 to get to the last assertions of the theorem. �

Corollary 3.5. Let
(
X, ||| . |||

)
be a normed space. Let for some ε > 0 and positive

real number r ̸= 2, f : X → Y satisfy the inequality

||Df(x, y)|| ≤ ε
(
|||x|||r + |||y|||r

)
(x, y ∈ X).

Then there is a unique continuous quadratic mapping Q : X → Y such that

||f(x)−Q(x)|| ≤ 2 ε|||x|||r

|2rp − 22p|q

and Q(sx) = s2Q(x) for each s ∈ R and x ∈ X.

Proof. Apply Corollary 3.4 (i) for α = 2 and φ(x, y) = ε
(
|||x|||r + |||y|||r

)
for each

x, y ∈ X. �

Corollary 3.6. Let for some ε > 0, f : X → Y satisfy the inequality

||Df(x, y)|| ≤ ε (x, y ∈ X).

Then there is a unique continuous quadratic mapping Q : X → Y such that

||f(x)−Q(x)|| ≤ ε

(22p − 1)q

and Q(sx) = s2Q(x) for each s ∈ R and x ∈ X.

Proof. Apply Corollary 3.4 for φ(x, y) = ε for each x, y ∈ X and α = 1. �
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