• Title/Summary/Keyword: Bed Load Transport

Search Result 46, Processing Time 0.021 seconds

Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan

  • Aldrees, Ali;Bakheit, Abubakr Taha;Assilzadeh, Hamid
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.781-796
    • /
    • 2020
  • Prediction of total sediment load is essential in an extensive range of problems such as the design of the dead volume of dams, design of stable channels, sediment transport in the rivers, calculation of bridge piers degradation, prediction of sand and gravel mining effects on river-bed equilibrium, determination of the environmental impacts and dredging necessities. This paper is aimed to investigate and predict the total sediment load of the Wadi Arbaat in Eastern Sudan. The study was estimated the sediment load by separate total sediment load into bedload and Suspended Load (SL), independently. Although the sediment records are not sufficient to construct the discharge-sediment yield relationship and Sediment Rating Curve (SRC), the total sediment loads were predicted based on the discharge and Suspended Sediment Concentration (SSC). The turbidity data NTU in water quality has been used for prediction of the SSC in the estimation of suspended Sediment Yield (SY) transport of Wadi Arbaat. The sediment curves can be used for the estimation of the suspended SYs from the watershed area. The amount of information available for Khor Arbaat case study on sediment is poor data. However, the total sediment load is essential for the optimal control of the sediment transport on Khor Arbaat sediment and the protection of the dams on the upper gate area. The results show that the proposed model is found to be considered adequate to predict the total sediment load.

FINITE ELEMENT MODELING FOR HYDRODYNAMIC AND SEDIMENT TRANSPORT ANALYSIS (II) : SEDIMENT TRANSPORT STUDY

  • Noh, Joon-Woon
    • Water Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.99-109
    • /
    • 2003
  • Since bed elevation changes are mainly dependent on the flow velocity and corresponding shear stress, it is possible to predict bed elevation numerically using velocity components. For the scour analysis due to channel contraction, a bed load transport model is developed and applied to estimate scour depth around coffer dam in the Mississippi River. During Phase I of the Lock & Dam No. 26 replacement project, a coffer dam was constructed to reduce the flow area approximately by 50%. Flow velocity increases due to the flow area reduction yields significant lowering (erosion) of the channel bed elevation. The proposed numerical model solves the sediment continuity equation using the finite element method to evaluate scour process in the vicinity of the coffer dam

  • PDF

Numerical Analysis for Bed Changes due to Sediment Transport Capacity Formulas and Sediment Transport Modes at the Upstream Approached Channel of the Nakdong River Estuary Barrage (낙동강하구둑 상류 접근수로에서의 유사량 공식 및 유사 이송형태에 따른 하상변동 수치모의에 관한 연구)

  • Ji, Un;Yeo, Woon-Kwang;Han, Seung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.543-557
    • /
    • 2010
  • The effects of the selection for sediment transport equations and advection-diffusion equations according to different sediment transport modes on the modeling results of bed changes were analyzed using the CCHE2D and compared with field data in this paper. The most suitable sediment transport equation and sediment transport mode for advection-diffusion equation were suggested for the upstream approached channel of the Nakdong River Estuary Barrage. The bed changes simulated by the Engelund and Hansen formula were very small in the modeling case for the low and high flow discharges compared with the case of the Ackers and White formula. Also, the numerical modeling with the actual hydraulic event in 2002 presents that the bed change result with the bed load transport type for advection-diffusion equation was close to the field measurement more than the suspended load type.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

Bed Load Transport Equations (소류사량 산정식)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.52-60
    • /
    • 1996
  • Existing equations of bed load transport are reviewed mainly considering the meaning and. role of variables used in the equations. The development of several equations and the problems of each equation are investigated by comparing their computed results against field or laboratory data. On the basis of the review remedies of each equation are suggested, and modified forms of existing equations are developed for wider application and improvement in the accuracy. Empirical parameters introduced in each equation are determined by testing them against Brownlie(1985)'s collected data, and discrepancy ranges of the refined equations are shown to see their degrees of accuracy.

  • PDF

Sediment Transport Calculation Considering Cohesive Effects and Its Application to Wave-Induced Topographic Change (점착력을 고려한 표사유동 수치모델의 제안과 파랑에 의한 지형변동의 적용성 검토)

  • Cho, Yong Hwan;Nakamura, Tomoaki;Mizutani, Norimi;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.405-411
    • /
    • 2013
  • A sediment transport calculation considering cohesive force is proposed to deal with the transport phenomena of cohesive sediment. In the proposed calculation, each sand particle is assumed to be surrounded by a thin layer of mud. The critical Shields parameter and bed-load sediment transport rate are modified to include the cohesive force acting on the sand particle. The proposed calculation is incorporated into a two-way coupled fluid-structure-sediment interaction model, and applied to wave-induced topographic change of artificial shallows. Numerical results show that an increase in the content ratio of the mud, cohesive resistance force per unit surface area and water content cause increases in the critical Shields parameter and decreases in the bed-load sediment transport rate, reducing the topographic change of the shallow without changing its trend. This suggests that mixing mud in the pores of the sand particles can reduce the topographic change of shallows.

Development of Two-Dimensional Sediment Transport Model Using Observed Erosion Rate (침식률 측정자료를 이용한 2차원 퇴적물 수송모형의 개발)

  • Jeong, Tae-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.687-699
    • /
    • 2001
  • A 2-dimensional numerical sediment transport model has been developed by using erosion rates observed by SEDFLUME. The model un boundary-fitted coordinate can reduce inaccuracy of sediment model with accurate erosion data. Suspended transport and bed load transport are included in the model together. The model results gave good agreement with particle size distributions in 1-d channel and was more accurate than that of HIDAS of 1-dimensional model. The model applied to an enlarging channel to check model performance in 2-dimensional domain. Bed coarsening reduced erosion and deposition.

  • PDF