• 제목/요약/키워드: Beam pattern analysis

검색결과 275건 처리시간 0.025초

Modelling of recycled aggregate concrete-filled steel tube (RACFST) beam-columns subjected to cyclic loading

  • Yang, You-Fu
    • Steel and Composite Structures
    • /
    • 제18권1호
    • /
    • pp.213-233
    • /
    • 2015
  • A nonlinear finite element analysis (FEA) model is presented for simulating the behaviour of recycled aggregate concrete-filled steel tube (RACFST) beam-columns subjected to constant axial compressive load and cyclically increasing flexural loading. The FEA model was developed based on ABAQUS software package and a displacement-based approach was used. The proposed engineering stress versus engineering strain relationship of core concrete with the effect of recycled coarse aggregate (RCA) replacement ratio was adopted in the FEA model. The predicted results of the FEA model were compared with the experimental results of several RACFST as well as the corresponding concrete-filled steel tube (CFST) beam-columns under cyclic loading reported in the literature. The comparison results indicated that the proposed FEA model was capable of predicting the load versus deformation relationship, lateral bearing capacity and failure pattern of RACFST beam-columns with an acceptable accuracy. A parametric study was further carried out to investigate the effect of typical parameters on the mechanism of RACFST beam-columns subjected to cyclic loading.

Effect of Tension Stiffering on the Behavior of Reinforced Concrete Beam (콘크리트 인장강성이 철근콘크리트 보의 거동에 미치는 영향)

  • 이봉학
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제41권4호
    • /
    • pp.104-112
    • /
    • 1999
  • Tensile behavior in concrete has been neglected until recently. However, the effect of tensile stresses in concrete must be considered where the member primarily carries tensile forces or when ultimate strength is affected by the cracking history. In this paper, a series of experiments were performed with a reinforced rectangular beams of 15 specimens in order to investigate the effect of tension stiffening into the nonlinear analysis and cracking behavior. The experimental results were analyzed in terms of load-deflection curves and strain fracture energy with respect to the main experimental variables such as types of specimen, strength of concrete and steel ration. The results from experiments and finite element analysis were compared in terms of load-deflection relationship and cracking pattern. The results are as follows ; The tension stffening effects of reinforced concrete beams were observedc up to yielding of members after cracking showing strain energy difference of 35 % at the beam of 0.57% steel ratio compared with that of beam ignoring the tension stiffening effect. The tension stiffening of concrete strength 400kgf/$\textrm{cm}^2$ and 600kgf/$\textrm{cm}^2$ increased by 8% and 13%, respectively, compared with that of concrete strength 200kgf/$\textrm{cm}^2$. The tension stiffening effects were greater at a ductile member rather than a brittle one. The load-deflection results of finite element analysis showed very similar results from experiment. The crack growth and pattern might be predicted from the nonlinear finite element analysis considering concrete stiffening.

  • PDF

Design of Flower Pattern in Roll Forming Process for Ultra High Strength Bumper Beam (초고강도 범퍼 빔의 롤 포밍 공정을 위한 플라워 패턴 설계)

  • Cha, T.W.;Kim, J.H.;Kim, G.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • 제25권5호
    • /
    • pp.319-324
    • /
    • 2016
  • Recently, the roll forming process is one of the most widely used processes for manufacturing automotive part. In this study, flower patterns of roll forming process were designed to manufacture an ultra high strength bumper beam using the finite element analysis. Three types of flower patterns such as the basic type, the rotation type and the split type were designed based on the constant arc length forming method using the design software, UBECO Profil. Finite element analysis was performed to evaluate the suitability of designed flower patterns in terms of the longitudinal strain and the bow defect. The analytical results show that the split type represents more uniform longitudinal strain distributions and a good dimensional accuracy than other types of flower patterns.

The Influence of Parameters Controlling Beam Position On-Sample During Deposition Patterning Process with Focused Ion Beam (빔 위치 관련 제어인자가 집속이온빔 패턴 증착공정에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제32권3호
    • /
    • pp.209-216
    • /
    • 2008
  • The application of focused ion beam (FIB) depends on the optimal interaction of the operation parameters between operating parameters which control beam and samples on the stage during the FIB deposition process. This deposition process was investigated systematically in C precursor gas. Under the fine beam conditions (30kV, 40nm beam size, etc), the effect of considered process parameters - dwell time, beam overlap, incident beam angle to tilted surface, minimum frame time and pattern size were investigated from deposition results by the design of experiment. For the process analysis, influence of the parameters on FIB-CVD process was examined with respect to dimensions and constructed shapes of single and multi- patterns. Throughout the single patterning process, optimal conditions were selected. Multi-patterning deposition were presented to show the effect of on-stage parameters. The analysis have provided the sequent beam scan method and the aspect-ratio had the most significant influence for the multi-patterning deposition in the FIB processing. The bitmapped scan method was more efficient than the one-by-one scan type method for obtaining high aspect-ratio (Width/Height > 1) patterns.

Near-explosion protection method of π-section reinforced concrete beam

  • Sun, Qixin;Liu, Chao
    • Geomechanics and Engineering
    • /
    • 제28권3호
    • /
    • pp.209-224
    • /
    • 2022
  • In this study, the numerical analysis model of π-beam explosion is established to compare and analyze the failure modes of the π-beam under the action of explosive loads, thus verifying the accuracy of the numerical model. Then, based on the numerical analysis of different protection forms of π beams under explosive loads, the peak pressure of π beam under different protection conditions, the law of structural energy consumption, the damage pattern of the π beam after protection, and the protection efficiency of different protective layers was studied. The testing results indicate that the pressure peak of π beam is relatively small under the combined protection of steel plate and aluminum foam, and the peak value of pressure decays quickly along the beam longitudinal. Besides, as the longitudinal distance increases, the pressure peak attenuates most heavily on the roof's explosion-facing surface. Meanwhile, the combined protective layer has a strong energy consumption capacity, the energy consumed accounts for 90% of the three parts of the π beam (concrete, steel, and protective layer). The damaged area of π beam is relatively small under the combined protection of steel plate and aluminum foam. We also calculate the protection efficiency of π beams under different protection conditions using the maximum spalling area of concrete. The results show that the protective efficiency of the combined protective layer is 45%, demonstrating a relatively good protective ability.

Performance of headed FRP bar reinforced concrete Beam-Column Joint

  • Md. Muslim Ansari;Ajay Chourasia
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.71-81
    • /
    • 2024
  • Fiber Reinforced Polymer (FRP) bars have now been widely adopted as an alternative to traditional steel reinforcements in infrastructure and civil industries worldwide due variety of merits. This paper presents a numerical methodology to investigate FRP bar-reinforced beam-column joint behavior under quasi-static loading. The proposed numerical model is validated with test results considering load-deflection behavior, damage pattern at beam-column joint, and strain variation in reinforcements, wherein the results are in agreement. The numerical model is subsequently employed for parametric investigation to enhance the end-span beam-column joint performance using different joint reinforcement systems. To reduce the manufacturing issue of bend in the FRP bar, the headed FRP bar is employed in a beam-column joint, and performance was investigated at different column axial loads. Headed bar-reinforced beam-column joints show better performance as compared to beam-column joints having an L-bar in terms of concrete damage, load-carrying capacity, and joint shear strength. The applicability and efficiency of FRP bars at different story heights have also been investigated with varying column axial loads.

Mechanism of Wrinkle Formation on Styrene-Butadiene-Styrene Block Copolymer via Ion-Beam Irradiation (Styrene-Butadiene-Styrene Block Copolymer 위 이온빔 조사를 이용한 주름 구조 생성 메커니즘 연구)

  • Lee, Ju Hwan;Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제34권2호
    • /
    • pp.130-135
    • /
    • 2021
  • Wrinkle patterns were fabricated on styrene-butadiene-styrene (SBS) block copolymer substrates using ion-beam (IB) irradiation with various intensities. The wavelength of the wrinkle pattern increased as the IB intensity was increased from 800 to 1,600 eV. IB irradiation-induced changes in the surface properties that were confirmed via physicochemical surface analyses. X-ray photoelectron spectroscopy analysis revealed chemical surface reformation due to the IB irradiation, resulting in C-O/C=O bonds after IB irradiation that were not reported before. These results indicate that the surface chemical modification caused by IB irradiation is strongly related to the surface modulus, which is important when fabricating wrinkle patterns. Furthermore, a strong IB irradiation induced a strong compressive strain; thus the size of the wrinkle pattern was increased.

Spatially multiplexed volume hologram using an optical fiber (광섬유를 이용한 위치 다중화 구조의 체적 홀로그램)

  • 강용훈;김기현;이병호
    • Korean Journal of Optics and Photonics
    • /
    • 제8권3호
    • /
    • pp.241-244
    • /
    • 1997
  • A speckle pattern from an optical fiber is used for a reference beam in writing and reading a volume hologram. The photorefractive volume hologram with this scheme shows good spatial selectivity for spatial(shift) multiplexing because the speckle pattern in writing and reading a hologram looses correlation with a small spatial shift. This scheme has the insensitivity to axial movement. The data storage system with this scheme will have a high storage density and a good stability in operation. We theoretically analyze the diffracted beam from a volume hologram recorded with the speckle pattern from the optical fiber. Experimental results are presented and compared with numerical analysis.

  • PDF

Active Water-Level and Distance Measurement Algorithm using Light Beam Pattern (광패턴을 이용한 능동형 수위 및 거리 측정 기법)

  • Kim, Nac-Woo;Son, Seung-Chul;Lee, Mun-Seob;Min, Gi-Hyeon;Lee, Byung-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제52권4호
    • /
    • pp.156-163
    • /
    • 2015
  • In this paper, we propose an active water level and distance measurement algorithm using a light beam pattern. On behalf of conventional water level gauge types of pressure, float-well, ultrasonic, radar, and others, recently, extensive research for video analysis based water level measurement methods is gradually increasing as an importance of accurate measurement, monitoring convenience, and much more has been emphasized. By turning a reference light beam pattern on bridge or embankment actively, we suggest a new approach that analyzes and processes the projected light beam pattern image obtained from camera device, measures automatically water level and distance between a camera and a bridge or a levee. As contrasted with conventional methods that passively have to analyze captured video information for recognition of a watermark attached on a bridge or specific marker, we actively use the reference light beam pattern suited to the installed bridge environment. So, our method offers a robust water level measurement. The reasons are as follows. At first, our algorithm is effective against unfavorable visual field, pollution or damage of watermark, and so on, and in the next, this is possible to monitor in real-time the portable-based local situation by day and night. Furthermore, our method is not need additional floodlight. Tests are simulated under indoor environment conditions from distance measurement over 0.4-1.4m and height measurement over 13.5-32.5cm.

A Study on Mobile Target Estimation Resolution using Effects of Model Errors and Sensitivity Analysis

  • Lee, Kwan Hyeong
    • International journal of advanced smart convergence
    • /
    • 제2권1호
    • /
    • pp.21-23
    • /
    • 2013
  • The antenna pattern in this case has a main beam pointed in the desired signal direction, and has a null in the direction of the interference.The conventional antenna pattern concepts of beam width, side lobes, and main beams are not used, as the antenna weights are designed to achieve a set performance criterion such as maximization of the output SNR.A new direction of arrival estimation method using effects of model errors and sensitivity analysis is proposed. Two subspaces are used to form a signal space whose phase shift between the reference signal and its effects of model error signal. Through simulation, the performance showed that the proposed method leads to increased resolution and improved accuracy of DOA estimation relative to those achieved with existing method. Since a desired signal is obtained after interference rejection through correction effects of model error, the effect of channel interference on the estimation is significantly reduced.