Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.2.130

Mechanism of Wrinkle Formation on Styrene-Butadiene-Styrene Block Copolymer via Ion-Beam Irradiation  

Lee, Ju Hwan (Department of Electrical and Electronic Engineering, Yonsei University)
Kim, Dai-Hyun (Department of Smart Electric, Korea Polytechnic)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.2, 2021 , pp. 130-135 More about this Journal
Abstract
Wrinkle patterns were fabricated on styrene-butadiene-styrene (SBS) block copolymer substrates using ion-beam (IB) irradiation with various intensities. The wavelength of the wrinkle pattern increased as the IB intensity was increased from 800 to 1,600 eV. IB irradiation-induced changes in the surface properties that were confirmed via physicochemical surface analyses. X-ray photoelectron spectroscopy analysis revealed chemical surface reformation due to the IB irradiation, resulting in C-O/C=O bonds after IB irradiation that were not reported before. These results indicate that the surface chemical modification caused by IB irradiation is strongly related to the surface modulus, which is important when fabricating wrinkle patterns. Furthermore, a strong IB irradiation induced a strong compressive strain; thus the size of the wrinkle pattern was increased.
Keywords
Ion-beam irradiation; Wrinkle formation; Styrene-butadiene-styrene block copolymer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Yan, K. Zhang, F. Peng, and G. Hu, Appl. Phys. Lett., 105, 071905 (2014). [DOI: https://doi.org/10.1063/1.4893596]   DOI
2 P. Jurik, P. Slepicka, M. Nagyova, and V. Svorcik, Surf. Coat. Technol., 311, 344 (2017). [DOI: https://doi.org/10.1016/j.surfcoat.2017.01.030]   DOI
3 T. Seki, D. Yamaoka, T. Takeshima, Y. Nagashima, M. Hara, and S. Nagano, Mol. Cryst. Liq. Cryst., 644, 52 (2017). [DOI: https://doi.org/10.1080/15421406.2016.1277329]   DOI
4 R. J. Spontak and N. P. Patel, Curr. Opin. Colloid Interface Sci., 5, 333 (2000). [DOI: https://doi.org/10.1016/S1359-0294(00)00070-4]   DOI
5 W. F. Lee and Y. J. Chen, J. Appl. Polym. Sci., 82, 2641 (2001). [DOI: https://doi.org/10.1002/app.2117]   DOI
6 M. D. Romero-Sánchez, M. M. Pastor-Blas, J. M. Martin-Martinez, and M. J. Walzak, Int. J. Adhes. Adhes., 25, 358 (2005). [DOI: https://doi.org/10.1016/j.ijadhadh.2004.12.001]   DOI
7 J. Y. Chung, A. J. Nolte, and C. M. Staffo, Adv. Mater., 23, 349 (2011). [DOI: https://doi.org/10.1002/adma.201001759]   DOI
8 X. Cheng, B. Meng, X. Chen, M. Han, H. Chen, Z. Su, M. Shi, and H. Zhang, Small, 12, 229 (2016). [DOI: https://doi.org/10.1002/smll.201502720]   DOI
9 N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, Nature, 393, 146 (1998). [DOI: https://doi.org/10.1038/30193]   DOI
10 H. Hou, J. Yin, and X. Jiang, Adv. Mater., 28, 9126 (2016). [DOI: https://doi.org/10.1002/adma.201602105]   DOI
11 T. Ohzono, H. Monobe, R. Yamaguchi, Y. Shimizu, and H. Yokoyama, Appl. Phys. Lett., 95, 014101 (2009). [DOI: https://doi.org/10.1063/1.3167547]   DOI
12 B. Li, Y. P. Cao, X. Q. Feng, and H. Gao, Soft Matter, 8, 5728 (2012). [DOI: https://doi.org/10.1039/C2SM00011C]   DOI
13 B. Wang, Y. Zhang, H. Zhang, Z. Chen, X. Xie, Y. Sui, X. Li, G. Yu, L. Hu, Z. Jin, and X. Liu, Carbon, 70, 75 (2014). [DOI: https://doi.org/10.1016/j.carbon.2013.12.074]   DOI
14 M. Ramuz, B.C.K. Tee, J.B.H. Tok, and Z. Bao, Adv. Mater., 24, 3223 (2012). [DOI: https://doi.org/10.1002/adma.201200523]   DOI
15 C. Lu, H. Mohwald, and A. Fery, Soft Matter, 3, 1530 (2007). [DOI: https://doi.org/10.1039/B712706E]   DOI
16 P. C. Lin and S. Yang, Appl. Phys. Lett., 90, 241903 (2007). [DOI: https://doi.org/10.1063/1.2743939]   DOI