• Title/Summary/Keyword: Bdc

Search Result 64, Processing Time 0.033 seconds

Two-Dimensional Lanthanum-BDC Coordination Polymer:Hydrothermal Synthesis and Structure of [La4(BDC)6(H2O)5](H2O)(BDC=benzene-1,3-dicaboxylate) (2차원 La-BDC 배위 고분자: [La4(BDC)6(H2O)5](H2O)의 수열합성 및 구조(BDC=benzene-1,3-dicaboxylate))

  • Kim, Hye Jin;Min, Dong Won;Heo, Hyun Su;Lee, Soon W.
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.6
    • /
    • pp.507-512
    • /
    • 2001
  • The hydrothermal reaction between lanthanum(Ⅲ) nitrate $(La(NO3)3${\cdot}$6H_2O)$ and benzene-1,3-dicarboxylic acid $(H_2BDC)$ in the presence of 1,2-bis(4-pyridyl)ethane gave a 2-D lanthnum-BDC coordination polymer with an empirical formula of $〔La_4$(BDC)_6(H_2O)_5$〕(H_2O)$ (1). X-ray structure analysis of compound 1 revealed that this polymer contains four distinct La metals. The three La metals are 7-coordinate with three different structures: a capped trigonal prism, a capped octahedron, and a pentagonal bipyramid. The remaining La metal has a 8-coordinate, square antiprismatic structure.

  • PDF

1-Dimensional Zinc Polymer Containing the Quadruply Bridging Oxygen Ligand : $[Zn_4(1,3- BDC)_3({\mu}_4-O)\;(pyridine)_2]$ (4중 가교 산소 리간드를 함유한 1차원 아연 배위 고분자:$[Zn_4(1,3- BDC)_3({\mu}_4-O)\; (pyridine)_2]$ (1,3-BDC : 1, 3-benzenedicarboxylate))

  • Min Dongwon;Lee Soon W.
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.69-73
    • /
    • 2004
  • The hydro(solve)thermal reaction of zinc(II) nitrate $(Zn(NO_3)_2{\cdot}6H_2O)$ with $1,3-BDCH_2\;(1,3-BDC= 1,3-benzenedicarboxylate)$ in the presence of pyridine a gave 1-dimensional zinc polymer $[Zn(1,3- BDC)({\mu}_4-O)\;(pyridine)_2]$ (1). X-ray structure determination revealed that polymer 1 has a quadruply bridging oxygen $({\mu}_4-O)$ ligand. This polymer consists of two strands linked by 1,3-BDC ligands, and each strand is formed by connecting the monomer units by 1,3-DBC ligands.

Improvements of Extended Drain NMOS (EDNMOS) Device for Electrostatic Discharge (ESD) Protection of High Voltage Operating LDI Chip (고전압용 LDI 칩의 정전기 보호를 위한 EDNMOS 소자의 특성 개선)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.18-24
    • /
    • 2012
  • High current behaviors of the extended drain n-type metal-oxide-semiconductor field effects transistor (EDNMOSFET) for electrostatic discharge (ESD) protection of high voltage operating LDI (LCD Driver IC) chip are analyzed. Both the transmission line pulse (TLP) data and the thermal incorporated 2-dimensional simulation analysis demonstrate a characteristic double snapback phenomenon after triggering of biploar junction transistor (BJT) operation. Also, background doping concentration (BDC) is proven to be a critical factor to affect the high current behavior of the EDNMOS devices. The EDNMOS device with low BDC suffers from strong snapback in the high current region, which results in poor ESD protection performance and high latchup risk. However, the strong snapback can be avoided in the EDNMOS device with high BDC. This implies that both the good ESD protection performance and the latchup immunity can be realized in terms of the EDNMOS by properly controlling its BDC.

Control of Background Doping Concentration (BDC) for Electrostatic Discharge (ESD) Protection of High Voltage Operating LDI Chip (고전압용 LDI 칩의 정전기 보호를 위한 EDNMOS 소자의 백그라운드 도핑 특성)

  • Seo, Yong-Jin;Kim, Kil-Ho;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.140-141
    • /
    • 2006
  • Background doping concentration (BDC) is proven to be a critical factor to affect the high current behavior of the extended drain NMOSFET (EDNMOS) devices. The EDNMOS device with low BDC suffers from strong snapback in the high current region, which results in poor electrostatic discharge (ESD) protection performance and high latchup risk. However, the strong snapback can be avoided in the EDNMOS device with high BDC. This implies that both the good ESD protection performance and the latchup immunity can be realized in terms of the EDNMOS by properly controlling its BDC.

  • PDF

Analysis and Control of A Fixed Frequency LCL-type Isolated Bidirectional Converter (고정주파수 LCL타입 절연형 양방향 컨버터 해석 및 제어)

  • Park, Sangeun;Cha, Hanju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.65-72
    • /
    • 2016
  • This paper discussed the LCL-type & Isolated bidirectional dc-dc converter(BDC) with dual full bridge inverter. In order to verify the analysis of the BDC, Experimental prototype has been designed and implemented to supply constant voltage regardless of loads and proposed a method to select switching frequency that depended on two inductors' inductance ratio and transformer parameters. The proposed converter has been composed of LCL resonant network with unit inductance ratio ($L_r/L_f$=1) and then operated with fixed duty, 50% duty ratio and fixed frequency. There are some characteristics that input voltage and output voltage of the BDC is nearly identical and zero voltage turn-on switching is possible in forward and reverse mode. Finally, it has been showed that BDC is possible to commutate operating mode normally and provide constant output voltage in selected switching frequency.

A Seamless Transfer Method of Bidirectional DC-DC Converter for ESS in DC Micro-grids (DC 마이크로그리드에서 에너지 저장장치를 위한 양방향 DC-DC컨버터의 무순단 절체 제어기법)

  • Kwon, Min-Ho;Park, Jung-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.194-200
    • /
    • 2014
  • In DC micro-grid system energy storage systems (ESS) are responsible for storing energy and balancing power. Also, control target of the bidirectional DC-DC converter(BDC) for ESS should be changed depending on the operating mode. During the grid connected mode, the BDC controls the battery current or voltage. When a grid fault occurs, the BDC should change the control target to regulate the DC-bus. The BDC with conventional control method may experience large transient state during the mode change. This paper proposes a control method of BDC for ESS. The proposed control method is able to provide autonomous and seamless mode transfer by a variable current limiter. To validate the proposed concept, simulation results using PSIM and experimental results from a 2kW prototype are provided.

Optimal Soft-Switching Scheme for Bidirectional DC-DC Converters with Auxiliary Circuit

  • Lee, Han Rim;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.681-693
    • /
    • 2018
  • This paper proposes a soft-switching bidirectional dc-dc converter (BDC) with an auxiliary circuit. The proposed BDC can achieve the zero-voltage switching (ZVS) using an auxiliary circuit in the buck and boost operations. The auxiliary circuit supplies optimal energy for the ZVS operation of the main switches. The auxiliary circuit consists of a resonant inductor, a back-to-back switch and two capacitors. A small-sized resonant inductor and an auxiliary switch with a low-rated voltage can be used in the auxiliary circuit. Zero-current switching (ZCS) turn-on and turn-off of the auxiliary switches are possible. The proposed soft-switching scheme has a look-up table for optimal switching of the auxiliary switches. The proposed strategy properly adjusts the turn-on time of the auxiliary switch according to the load current. The proposed BDC is verified by the results of PSIM simulations and experiments on a 3-kW ZVS BDC system.

Total polyphenol and ferulic acid analysis of a new variety of corn, Bandiburichodang, according to steaming time and roasting temperature

  • Nari Yoon;Hak-Dong Lee;Uyoung Na;A Ram Yu;Min-Jung Bae;Gunhwa Park;Sanghyun Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.305-310
    • /
    • 2023
  • Bandiburichodang (BDC) is a new variety of Zea mays L. Total polyphenol content (TPC) assay and quantitative analysis of ferulic acid (FA) were performed to determine the steaming, roasting conditions of BDC kernels that lead to the highest content. TPC levels increased after roasting under all conditions. TPC levels in samples steamed at 115 ℃ for 25 min were 3.157 mg/g before roasted, and increased to 3.825 and 4.739 mg/g after roasting at 160 and 200 ℃, respectively. Whether BDC kernels were roasted was relevant with TPC content. BDC kernels were extracted to perform quantitative analysis of FA. Roasting temperature affected FA content: the higher the temperature, the lower the content. BDC kernels that were steamed at 115 ℃ for 25 min had 0.178 mg/g of FA content before roasting, and levels decreased to 0.132 and 0.115 mg/g after roasting. Under different roasting conditions, FA content decreased 15 to 50%. We hypothesize that this phenomenon is due to a breakdown of phenolic compounds or cell wall disruption.