2차원 La－BDC 배위 고분자：$\left[\mathrm{La}_{4}(\mathrm{BDC})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)$ 의 수열합성 및 구조（BDC＝benzene－1，3－dicaboxylate）

金惠眞－閔東元•許鉉秀－李順遠＊

성균관내학피！화학파
（2001．10． 4 전수）

Two－Dimensional Lanthanum－BDC Coordination Polymer： Hydrothermal Synthesis and Structure of $\left[\mathrm{La}_{4}(\mathrm{BDC})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathbf{s}}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)$
 （BDC＝benzene－1，3－dicaboxylate）

Hye Jin Kim，Dongwon Min，Hyun Sue Hoe，and Soon W．Lee＊

（Rowived October 4，2001）

Abstract

 아 수열반ㅇㅇㅇ하여 $[\operatorname{Lan}(\mathrm{BDC}) \mathrm{m}(\mathrm{LLO})$ ）$](\mathrm{ILO})(1)$ 실힘식은 갖는 2 차원 lanthaumm－ BDC 배위 고분자아 합성되 었다，화합문 1 의 구조 분석 견자，이 고분자근 분멍히 구벌되는 기의 La 금속들을 함유하고 있었다． 3 기의 오잤ㅆㅇ뿔 듬의 더른 구조둘을 가지고 있다．나마지 I a 곰속은 8－배위 사가 반으리림（antiprismatic）구조를 가 지고 있다．

Abstract

The hydrothennal raction between lanthanum（II）nitrate（ $\mathrm{La}\left(\mathrm{NO}_{i}\right)_{i} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ）and benzene－ 1，3－dicarboxylic acid（112BDC）in the presence of 1,2 －bis（4－pyridylethane gave a $2-\mathrm{D}$ lanthnum－BDC co－ ordination polymer with an empirical fomula of $\left[\mathrm{La}_{4}\left(\mathrm{BBDC}_{5}\right)_{8}\left(\mathrm{II}_{2} \mathrm{O}\right)_{5}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)(1)$ ．X－ray structure analy sis of compound 1 revealed that this polvmer contains four distinct La metals．The three La metals are 7 －coordinate with three dificrent structures：a capped trigonal prism，a capped octahedron，and a pentagonal bipyramid．The remaining Ia metal has a 8 －coordinate，squate antiprismatic structure

INTRODUCTION

Recently：extended frameworks of coordination poly－ mers．based on transition metals and multifuntional bridging groups．have gol considerable attractions．${ }^{1.2}$ In particular．the synthesis as well as the structural claracterivation of land hamum（III）－carboxylate coordi－ nation polymers is a rapidly growing area duc to their applications to ceramic materials．＇
We have recently become interested in preparing coordination polymers with anionic multifintional ligands．For instance，we have obtained a 3－D zinc
and a 3－D cobalt coordination－polymer by hydrother－ mal reactions．${ }^{\text {L．}}$ ．As a continuation of our research． we set out to prepare lanthanum coordination－poly－ mer with benzenc－1．？－dicarboxylic acid（ $\mathrm{H}_{2} \mathrm{BDC}$ ） by the lydrothemal raction．When we treated lathanum（III）nitrate with $\mathrm{H}_{2} \mathrm{BDC}$ in the presence of 1．2－bis（t－pyridyl）ethane．we obtained a two－dimen－ sional lantlanum－carboxylate coordination poly－ mer with an empirical fonnula of $\left.\mathrm{La}_{4}(\mathrm{BDC})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$（1）．Herein．we report the preparation and structure of the polymer 1 ．which has an open－ framework structure built from 7－or 8－coordinate
lanthanum metals and multidentate benzene－1．3－ dicarboxylate（ BDC^{2-} ）．

EXPERIMENTAL SECTION

$\mathrm{La}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 1.2 －bis（ 4 －pyridy l）cthane（BPE） were purchased from Aldrich company and used without further purification．Beneene－1．3－dicarbos－ ylic acid（or isophthalic acid． $\mathrm{H}_{2} \mathrm{BDC}$ ）was purchased from Fluka company and recrystallized from etha－ nol．IR spectra were recorded with a Nicolet 320 FT－IR spectrophotometer as KBr pellets in the range $+000-400 \mathrm{~cm}^{-1}$ ．
Preparation of $\left[\mathrm{La}_{1}(\mathrm{BDC})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{s}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)$（1）．A mixture of $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.261 \mathrm{~g} .0 .602 \mathrm{mmol})$ ． $\mathrm{H}_{2} \mathrm{BDC}(0.100 \mathrm{~g} .0,602 \mathrm{mmol})$ ． $\mathrm{BPE}(0.11 \mathrm{~g} .0 .602$ mmol）and deionired $\mathrm{H}_{2} \mathrm{O}(6.0 \mathrm{~mL}, 0.3 .33 \mathrm{~mol})$ in the mole ratio of $1: 1: 1: 553$ was licated in a $2.3-\mathrm{mL}$ capacity Teflon－lined reaction vessel at $180^{\circ} \mathrm{C}$ for 2 days．and then cooled to room temperature by air－ cooling．The crystalline product was collected by filtration washed with water（ $2 \times 5 \mathrm{~mL}$ ）and ethanol $(3 \times 5 \mathrm{~mL})$ ，and then air－dried to give yellow crys－ tals of compound 1．IR（KBr）： 3373 （br．OH），307＋ （s）． 1608 （s）． 1543 （s）． 1479 （s）． 1443 （s）． 1.385 （s）． 747 （s）． 713 （s） cm^{-1} ．
X－ray structure determination．All X－ray data were collected with the use of a Siemens $\mathrm{P}+$ diffrac－ tometer equipped wilh a Mo X－ray tube and a graphite－crystal monochromator．The oricntation matrix and unit－cell parameters were determined by least－ squares analyses of the setting angles of $3+$ reflec－ tions in the range $15.0<2 \theta<25.0$ ．Three check－ reflections were measured every 100 reflections throughout data collection and showed no notice－ able variations in intensily．Intensity data were cor－ nected for Lorenz and polarization effects．Decay corrections were also made．The intensity data were empirically corrected for absorption with ψ－scan data．All calculations were carried out with the use or SHELXTL programs．${ }^{\circ}$
A yellow crystal of approximate dimensions 0.20 $\times 0.18 \times 0,08 \mathrm{~mm}$ ．slaped as a block．was used for crystal－and imensity－data collection．The unit－cell parmeters and systematic absences．$h(1 /(l=2 n+1)$

Table 1．X－ray dala collection and sincture relinement

Fomula	$\mathrm{C}_{48} \mathrm{H}_{36} \mathrm{O}_{39} \mathrm{La}_{4}$
fiw	1648.41
temperature． K	$296(2)$
ernstal system	menoclinic
space group	${ }^{\prime} 2{ }_{1} \mathrm{C}$ C
a．A	$16.753(2)$
b．A	$14.605(2)$
c．A	21．521（3）
B．deg	$91.242(6)$
I：A^{4}	5265（1）
Z	4
$d_{\text {bud }} \mathrm{g} \mathrm{cm}{ }^{*}$	2.080
μ ，mmm ${ }^{\text {l }}$	3.278
$T_{\text {min }}$	0.2140
$T_{\text {mas }}$	0.3009
$F(000)$	3168
No．of reflections measured	9553
No．of retlections unique	9218
No．of reflections with $I: 2(l)$	5598
No．of parameters refitied	739
2θ range（＂）	．3．5－50．0
scant trpe	ω
scan speed	variable
GOF（goodness－01－lit on $H^{\text {a }}$ ）	1.011
Max．．min．in $\Delta \rho\left(\mathrm{e} \AA^{-i}\right)$	0．888，－1．060
R	0.0485
$w R_{2}$	0.0909

$\overline{\left.\left.a_{u R} R_{2}-\mid w\left(F^{2}-F^{2}\right)^{2}\right)^{2} \mid x\left(F^{2}\right)^{2}\right)\left.^{-1}\right|^{1-}}$
and $0 k(k=2 n+1)$ ．unambiguously indicatod $P 2_{1} c$ as a space group．The struclure was solved by direct methods．All non－lydrogen atoms were refined anisotropically．The C－H lyydrogen atoms were geri－ crated in ideal positions and refired in a riding model．The hydrogen atoms in the aqua ligands and in the free water molecule could not be located．
Details on crystal data．intensity collection．and structure refinements are given in Tahle 1．Final atomic coordinates and some selected bond dis－ tances and bond angles are shown in Tahles 2 and 3．respectively．

RESULTS AND DISCUSSION

Preparation．The title compound has been pre－ pared by the hydrothermal reaction．Lathanum（III）

Toble 2. Alomic coordinates ($10^{\text {d }}$) and eguivalent isotropic displacement paramelers $\left(\AA^{2} 10^{3}\right)$

	x	y	$=$	U(eq) ${ }^{\text {a }}$
Lu(1)	2790(1)	-678(1)	$6132(1)$	20(1)
La(2)	3730(1)	1830(1)	4872(1)	18(1)
Lu(3)	2255(1)	4312(1)	4027(1)	20(1)
Lu(4)	1345(1)	$68+5(1)$	5261(1)	18(1)
O(1)	$4510(4)$	1142(5)	5738(3)	26(2)
O(2)	4085(4)	132(5)	6415(3)	27(2)
O(3)	3927(5)	2663 (6)	881:13)	53(3)
O(4)	3305(5)	1433 (6)	84,50(3)	$41(2)$
O(5)	3646(5)	$3229(5)$	5488(3)	40(2)
O(6)	3347(5)	$4300(6)$	4797(3)	41(2)
O(7)	2657(4)	$741+(5)$	$5696(3)$	26(2)
$\bigcirc(8)$	3633(5)	7925(5)	6.314(3)	+2(2)
$\mathrm{O}(9)$	1514(5)	5359(5)	5712(3)	3.3 (2)
O(10)	1553(4)	42.31 (5)	5017 (3)	34(2)
O(11)	2754(4)	1246(5)	5742(3)	24, 2)
O(12)	2272(4)	775 (4)	$663+(3)$	29(2)
O(13)	2.355(4)	2382(5)	+463(3)	27(2)
O(14)	1424(4)	2928(4)	.3831(3)	30, 2)
O(15)	1026(5)	-1671(5)	4851(4)	$46(2)$
O(16)	1681(5)	-657(6)	54.36(4)	52(2)
O(17)	571(4)	$6178(5)$	4407(3)	28(2)
O(18)	991 (4)	5158(5)	3727(3)	30(2)
O(19)	1059(5)	7612(5)	1298(3)	40(2)
O(20)	1789(5)	6476(5)	1722(3)	34(2)
O(21)	2330(4)	6187(4)	4448(3)	21(2)
O(22)	2785(5)	5767(5)	3546(3)	33(2)
O(25)	$4931(5)$	902(6)	4471(3)	47(2)
O(26)	50566)	$2750(7)$	4837(4)	$71(3)$
O(27)	-80(4)	$6562(6)$	$5519(3)$	$51(2)$
O(28)	1811(5)	4275 (5)	2848(3)	37(2)
O(2)	3229(4)	-707(5)	7311(3)	34(2)
O(30)	4 $451(7)$	5768(8)	$4429(5)$	91(4)
O(23)	3249(5)	10418(5)	4427(3)	43(2)
O(24)	3+17(5)	9288(5)	5108(3)	37(2)
C(1)	4527(6)	1571(6)	6793(4)	21(2)
C(2)	$41.35(6)$	1522(7)	73.32(4)	2.3(2)
C(3)	4246 (6)	2155(7)	$7814(4)$	26(2)
C(4)	4786 (6)	$28600(7)$	7725 (4)	30, 3)
C(5)	5220(7)	2917(7)	7181(4)	$36(3)$
C(6)	5075(6)	2270(7)	6707(4)	27(2)
C(7)	$4.376(5)$	8966 (6)	6282(4)	$16(2)$
C(8)	.3791(7)	2084(8)	8406(4)	.31(3)
C(9)	3628(6)	4762(6)	5844(4)	28(2)
$\mathrm{C}(10)$	3416(6)	5655 (6)	5716(4)	2.3.2)
C(11)	3517(6)	6.318(6)	$6177(4)$	26(2)
$\mathrm{C}(12)$	3865(7)	$6087(7)$	6752(4)	. 35 (3)
C(13)	$4055(8)$	$5185(8)$	6872(5)	466)

Table 2. Continnued

	x	y	$=$	$\ell(\mathrm{ec})^{\prime \prime}{ }^{\prime \prime}$
$\mathrm{C}(14)$	3926(7)	$4519(8)$	(64260(5)	$43(3)$
C(15)	3550(6)	$4063(7)$	5347(5)	29(2)
C(16)	3261(7)	7285(7)	$6055(4)$	27(3)
$\mathrm{C}(17)$	1782(6)	3875(7)	$6083(4)$	25(2)
C(18)	1795(7)	4172(7)	$6691(4)$	33(3)
C(19)	2000(8)	3566(7)	7164(4)	41(3)
$\mathrm{C}(20)$	2204(7)	2668(7)	7026(4)	31(3)
$\mathrm{C}(21)$	2204(6)	2378(7)	6407(4)	22(2)
C(22)	1956(6)	2989(7)	$5949(4)$	26(2)
$\mathrm{C}(23)$	1596(6)	$4530(7)$	5565(4)	24(2)
$\mathrm{C}(24)$	$2411(6)$	1404(7)	6248(4)	20(2)
C(25)	$1299(7)$	1382(7)	4121(5)	$31(3)$
$\mathrm{C}(26)$	$1431(6)$	$710(7)$	4558(4)	26(2)
$\mathrm{C}(27)$	$1049(7)$	-118(7)	4522(5)	$35(3)$
$\mathrm{C}(28)$	497(9)	$-274(8)$	$4033(6)$	$61(4)$
$\mathrm{C}(29)$. $350(10)$	395(9)	3601(7)	$78(5)$
C(30)	$752(8)$	12.30(8)	$3641(6)$	57(4)
C(31)	1732(6)	2278(7)	4141(+)	21(2)
C(32)	1246(7)	-872(8)	4969(5)	$38(3)$
C(3)	$514(6)$	6584(7)	3344(4)	25(2)
C(34)	$1(6)$	7329(8)	3+47(4)	$30(3)$
C(35)	-1336)	$7960(8)$	2962(4)	37(3)
C(36)	257(6)	$7871(7)$	2411(4)	28(3)
C(37)	779(6)	$7150(7)$	2317(4)	22(2)
C(38)	$900(6)$	6501(7)	2777(4)	21(2)
C(39)	$705(6)$	$5916(7)$	3857(4)	24(2)
C(40)	1246(7)	7083(7)	1727(4)	2603)
C(41)	2721(6)	$7366(7)$	3758(4)	25(2)
C(42)	$2928(6)$	$7990(6)$	$4215(4)$	23(2)
C(43)	3013(7)	8917(7)	$4075(4)$	32(3)
C(4)	2862(7)	9217(7)	3+64(4)	$36(3)$
C(4)	2631(8)	8584(8)	3008(5)	43(3)
C(46)	2604(7)	$7665(7)$	$3151(4)$	30(3)
C(47)	2604(6)	6407(7)	3021(4)	22(2)
C(48)	3245(6)	9580(7)	4566 (5)	27(2)

"Equivalent isotropic ℓ defined as onc third of the trace of the orthogmalized l, tensor:
nitrate $\left(\mathrm{La}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$ reacts with bervenc-1.3dicarboxylic acid ($\mathrm{H}_{2} \mathrm{BDC}$) at $180^{\circ} \mathrm{C}$ in the presence
 $\left.\left(\mathrm{H}_{2} \mathrm{O}\right),\right]\left(\mathrm{H}_{2} \mathrm{O}\right)$ (1). a 3-D polymer ($\left.\propto \mathrm{q} ~ 1\right)$. Compourd 1 las been obtained as yellow crystals. It is air- and moisture-stable and is insoluble in common organic solvents.
$\mathrm{La}\left(\mathrm{NO}_{2}\right)_{3} 6 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{BDC} \rightarrow\left\{\left[\mathrm{La}_{4}\left(\mathrm{BDC}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{j}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]_{n}}\right.\right.\right.$

Tobke 3．Selected bond distances（ \AA ）and bond angles（＇）

Ial－016	$2.362(8)$	Lal－O20\％1	2．424（7）	I．al－O24 2	2．464（6）
Jal－O8 -2	$2.508(7)$	Lal－O2	$2.533(7)$	I．al－O12	$2.542(6)$
Lal－O29	$2.626(6)$	Lal－Oll	$2.933(7)$	Lail－O7\％2	2．948（7）
Lu2－O23－2	$2.405(7)$	Lat2－03：3	2．422（7）	La2－（9）	2．442（7）
L：12－O1	$2.467(6)$	La2－013	2．577（7）	La2－025	$2.590(8)$
La2－026	$2.598(9)$	La－O11	$2.654(6)$	Lat－（0443	$2.432(8)$
La3－06	2．442（7）	La3－O10	$2.460(7)$	Lith－Ol4	2.485 （7）
La3－018	2．524（7）	La3－022	$2.533(7)$	L43－O28	$2.629(6)$
I，3－021	2.887 （6）	J．a3－013	2．974（7）	Lat－09	$2.391(7)$
I，a4－015 ${ }^{4} 4$	$2.396(7)$	Jat－019：5	$2.426(6)$	$1 \mathrm{at}-\mathrm{Ol} 7$	$2.430(6)$
I a4－027	$2.497(7)$	J．at－O7	2．511（7）	I $24-\mathrm{O} 21$	2．614（6）
Iat－07－1．alit	119．4（3）	I．a2－O11－T．al	120．0（2）	I a_{2}－OI3－I $\mathrm{a}^{3} 3$	$116.612)$
I，a4－O21－I．a．	122．4（2）				

The IR specirum of $\mathbf{1}$ shows the expected absorp－ tion paks for the asymmetric and symuctric strecthing bands of carboxylates（ BDC^{2} ）in the ranges of $1600 \sim 1550 \mathrm{~cm}^{1}$ and $1+00-1.350 \mathrm{~cm}^{1}$ ．respectively．${ }^{-}$It shows no absorption bands for the free $\mathrm{H}_{3} \mathrm{BDC}$ （ $1700 \sim 1680 \mathrm{~cm}^{-1}$ ），suggesting the complete depro－ tonation of $\mathrm{H}_{2} \mathrm{BDC}$ to BDC^{--}．
A bifunctional ligand BPE was added in hopes of its role as a flexible＂spacer＂．but it does not appear to be involved in the reaction．However，we camot exclude the possibility that BPE acts as a base to deprotonate $\mathrm{H}_{2} \mathrm{BDC}$ during the reaction．The incor－ poration of the BDC^{2} instead of BPE into the pro－ duct suggests that the BDC^{2-} las a higher coordinat－ ing power compared with BPE in this reaction．
Structure．Seven－coordinate compounds are rela－ tively rare in transition－metal chemistry．The rela－ tive instability of these species has been attributed to the fact that the additional energy of the seventh bond is offsel by the increased ligand－ligand repul－ sions．weaker bonds．and generally reducod ligand－ ficld－stabilization encrgy as a resull of non－octa－ licdral geometry．${ }^{8}$ Throe geometries now establislicd： （1）a pentagonal bipyramid：（2）a capped trigonal prism in which a seventh ligand las been added to a rectangular facc：（3）a capped octahedron in which a seventh ligand has been added to a triangular face．
The monomeric unit of the polymer $\left\{\left(\mathrm{La}_{4}(\mathrm{BDC})_{6}\right.\right.$
$\left(\mathrm{H}_{2} \mathrm{O}\right)_{s}\left(\mathrm{H}_{2} \mathrm{O}\right) \xi_{n}$（1）is shown in Fig．1．Compound 1 cxhibits a two－dimensional structure．which contains four crystallograplically independent lanthanum ions with four distinct coordination geometrics．The three La metals are 7－coordinate with three different struc－ tures：a capped trigonal prism（Lal），a capped octa－ hedron（La3），and a pentagonal bipyramid（Lat）． The remaining La metal（La2）has a 8 －coordinate． square antiprismatic structure（（ hart I）．
The local coordination geometry around Lal is a 7 －coordinate．capped trigonal prism．which is corl－ structed by seven oxygen atoms coming from the six carboxylate oxygen atoms and one aqua oxy－ gen atom．The trigonal－prism core comprises two triangles（triangle $1: \mathrm{O} 2$ ． O 8 ，and O 24 ：triangle 2 ： O12，O20．and O16），with their diledral angle of $17.1^{\circ}(2)$ ．The oxygen atom（O29）in the aqua ligand acts as a capping agent on the rectangular face．
The coordination enviroment around La 2 is a square antiprism，which consists of six carboxylate oxygen and two aqua oxygen atoms．The square－ antiprism core comprises two squares（square 1：O3． O26．O5．and O13：square 2：O25．O1．O11．and O 23 ）．with their ditedral angle of $3.5^{\circ}(3)$ ．The coor－ dination geonctry of La3 is a capped octalicdron． which contains six carboxylate oxygen atoms and one aqua oxygen atom．Tle coordination splene of Lat can be described as pentagonal bipyramidal．

Fig. 1. PLUTO drasing of the local coordination environments of the La metals in compound 1.

Chart I. Coordination modes of La metals.

The pentagonal plane is composed of four carboxylate oxygen atoms and one water oxygen atom. The axial sites are occupied by carboxylate oxygen atoms coming from another two BDC^{2-} ligands. The equatorial plane, defined by five oxygen atoms (O7, $\mathrm{O} 19, \mathrm{O} 27, \mathrm{O} 17$, and O 21) in the pentagon and La4, is somewhat planar with the average atomic displacement of $0.1632 \AA$.

The bonding parameters mentioned above indicate the flexibility in the coordination of lanthanide ions, which might facilitate the formation of infinite frameworks of polymer $\mathbf{1}$ with unusual coordination numbers and geometries. The shortest La $\cdots \mathrm{La}$ distances \{Lal $\cdots \mathrm{La} 2: 4.8407(9)$: La2 $\cdots \mathrm{La} 3:$ 4.7283(9): La3 \cdots La4: 4.8213(9) \AA \} indicate no direct La-La interactions.
Fig. 2 shows an extremely complicated 2-D polymeric structure of $\mathbf{1}$. All carboxylate groups participate in connecting La metals to give a compact polymeric structure like a double helix, which does not appear to have any desirable channels. Whereas four carboxylate oxygen atoms ($\mathrm{O} 7, \mathrm{O11}, 013$, and O21) participate in connecting La metals by acting as $\mu_{-}-O$ bridging ligands, five aqua ligands ($\mathrm{O} 25-\mathrm{O} 29$) act simply as monodentate ligands.
In summary, we have structurally characterized $\left\{\left[\mathrm{La}_{+}(\mathrm{BDC})_{k}\left(\mathrm{I}_{2} \mathrm{O}\right)_{4}\right]\left(\left(\mathrm{I}_{2} \mathrm{O}\right)\right\}_{\mathrm{n}}(\mathbf{1})\right.$, which was prepared by the hydrothermal reaction of $\mathrm{La}\left(\mathrm{NO}_{3}\right) ; 6 \mathrm{H}_{2} \mathrm{O}$ with benzene-1,3-dicarboxylic acid ($\mathrm{H}_{2} \mathrm{BDC}$) in the presence of 1,2 -bis(4-pyridyl)ethane. The struclure of polymer 1 is unique in that it contains four distinct 7 - or 8 -coordinate La ions with a different coordination geometry for each La: a capped trigonal

Fig．2．A perspective view of the building blocks along the c－ axis．
prism，a capped octahedron，a pentagonal bipyra－ mid．or a square antiprism．Unfortunately，this polymer does not exhibit any desirable pores or channels of appropriate sizes．

SUPPLEMENTARY MATERIAL

Tables of full bond distances and bond angles． anisotropic thermal parameters，and atomic coordi－ nates of hydrogen atoms are available from the cor－ responding author Soon W．I．ee．

Acknowledgment．This work is based on research sponsored by the Korea Research Foundation Grant （KRF－2000－015－DP0262）．

REFERENCES

1．（a）Desiraju．（3．R．（rystat Enginering：The Design of Organic Solids：Elsevier：New York．1989．Vol．54．（b） Janiak．C．Angew：（hem．Imt．Ed．Engl．1997．36． 1431. （c）Batten．S．R．：Robson．R．Angew：（hem．，hat．Ed． Engt 1998．37．1461．（d）Hagrman．P．J．：J Lagrman．D．： Zubieta．J．Angew：Chem，Int．Ed．Engl．1999． 38. 2638．（e）Yaghi．O．M．：Li．H．：Davis．C．：Richardson． D．：Groy．I．L．Ace Chem．Res．1998，3／．474．（1） Evans．O．R．：Lin．W．／morg．Chem．2000．39． 2189.
2．（a）Barton．J．J．：Bull．L．M．：Klemperer．W．G．：Loy．D． A．：McEnaney．B．：Misono．M．：Monson．P．A．：Pez． G．：Schercr．G．W．：Vartuli．J．C．：Yaghi．O，M．Chem． Hoter：1999．II，2633．（b）Choetham．A．K．：Frey，Gi．： I oiscau．T．Angew：Chem．Int．Ed．Engl．1999． 38. 3268．（c）Kcllcr．S．W．Angew：Chem，hat Fd．Engl． 1997，36．247．（d）Gardner．G．B．：Venkataraman．［）．： Moore．J．S．：I．ce．S．Aattre 1995．37．792．（c）Hosk－ ins．B．F．：Robson．R．J．Im．（hem．Soc．1990．II）， 1546．（f）Xu．7．：White．S．：Thompson．L．．K．：Miller． D．O．：Obbe M．：Okawa．IL：Wilson．C．：Howaud J．A．K． J．（hem Soc．，Dalton Frons．2000．1751．（g）7aworotko． M．J．Angen：（hem．，hm．Ed．Engl．2000．39． 3052.
3．（a）Baggio．R．：Garland．M．T．：Perec．M．：vega D． horg．（hem．1996，35，2396．（b）Segal．D．Chemicat Sinthesis of Advanced Ceramic Materiaf；Cambridge University Press：Cambridge England．1989．（c）Wang． S．：Pang．L．：Smith．K．D．L．：Wagner．M．J．J．（hem． Soc：Datton Trans 1994． 955.
4．Min．D．W．：Yoon．S．S．：Lee．C．W．：Lee．C．Y．：Suh．M． K．：Ifwang．Y．J．：Itm．W．S．：Lee．S．W．Butl．koream Chem．Soc．2001．22， 531.
5．Min．D．W．：Yoon．S．S．：Lee．I．H．：Sul．M．K．：Lee． S．W．horg．Chem．Comm．2001．t． 297.
6．Braker．SHELXIL．Soructure Determination Sufheare Progremms：Bruker AnalyticalX－ray Instrunuents Inc．：Mad－ ison．Wisconsin．USA． 1997.
7．Silverstein．R．M．；Webster．Г．X．Spectronetic Identi－ froation of Organic Compomels，6th ए．d．：Wiley \＆Sons： New York． 1998.
8．Huheey，J．F．：Keiter．F．A．：Keiter．R．I．，hroranic Chemistry：Principles of Simume and Reocimitl：4th Ed．：HarperCollins：New York，1993：Chapter 7.

