• Title/Summary/Keyword: Bcl-X Protein

Search Result 145, Processing Time 0.033 seconds

Induction of Apoptosis in Human Colon Carcinoma HCT116 Cells Using a Water Extract of Lepidium virginicum L. (콩다닥냉이 추출물에 의한 HCT116 대장암세포의 사멸 유도에 관한 연구)

  • Chae, Yang-Hui;Shin, Dong-Yeok;Park, Cheol;Lee, Yong-Tae;Moon, Sung-Gi;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.649-659
    • /
    • 2011
  • To examine the anti-cancer effects of Lepidium virginicum L., the anti-proliferative and pro-apoptotic effects of a water extract of L. virginicum leaves (WELVL) and of L. virginicum roots (WELVR) were investigated in HCT116 human colon carcinoma cells. The treatment of HCT116 cells with WELVL and WELVR resulted in the inhibition of growth and morphological changes in a concentration-dependent manner by inducing apoptosis. The growth inhibition and apoptosis induction by WELVR was stronger than that of WELVL thus, we determined that WELVR was the more optimal extract for this study. The increased apoptotic events in HCT116 cells caused by WELVR were associated with an up-regulation of Fas ligand, Bax, and Bad expression, a down-regulation of Bcl-2, Bcl-$_XL$, and Bid expression, and a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\psi}m$). WELVR treatment induced the proteolytic activation of caspase-3, -8, and -9, and the degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, and phospholipase C-${\gamma}1$ (PLC-${\gamma}1$). In addition, apoptotic cell death induced by WELVR was correlated with a down-regulation of inhibitors of the apoptosis protein (IAP) family, such as the X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and cIAP-2. These findings suggest that the WELVR-induced inhibition of cell proliferation is associated with the induction of apoptotic cell death. WELVR may be a potential chemotherapeutic agent for the control of HCT116 human colon carcinoma cells.

Improvement of colitis preventive effects of Gochujang by addition of Lactobacillus plantarum on C57BL/6 mice (Lactobacillus plantarum 첨가 고추장의 C57BL/6 마우스에서 대장염 예방 증진효과)

  • Park, Eui-Seong;Heo, Ju-Hee;Lim, Yaung-Iee;Ju, Jaehyun;Park, Kun-Young
    • Food Science and Preservation
    • /
    • v.24 no.8
    • /
    • pp.1188-1194
    • /
    • 2017
  • Gochujang, a traditional Korean food, is fermented by mixing red pepper powder, various grain, meju and salt. Changes in the kind of ingredients and fermentation method could increase health functionalities. In this study, in vivo anti-colitis effects of gochujang prepared with mixed grains, bamboo salt baked 3 times and meju starters on DSS-induced colitis in C57BL/6 mice were studied. We prepared gochujang prepared with mixed grains (MG), bamboo salt, and Aspergillus oryzae (A) and Baccillus subtilis (B) mixed starters (MG-AB) and gochujang prepared with MG, bamboo salt and A, B and Lactobacillus plantarum (L) mixed starters (MG-ABL). MG-AB and MG-ABL significantly increased body weight and colon length compared to the control (p<0.05). MG-ABL showed significantly decreased interleukin-6 (IL-6) expression in serum compared to the control and MG-AB group (p<0.05). MG-ABL also regulated mRNA and protein levels of pro-apoptotic Bcl-2-associated X protein (Bax) and anti-apoptotic B-cell lymphoma-2 (Bcl-2) in the mice colon tissue (p<0.05). Therefore, MG-ABL exhibited the increased anticolitis effects by inhibiting damage of colon tissue, probably by regulating a pro-inflammatory cytokine of IL-6 and regulated apoptosis related genes. These results indicated that gochujang changed with good ingredients and starters had colitis preventive effects and might be due to active compounds in mixed grain and bamboo salt, and produced by L during the fermentation of gochujang.

Kimchi attenuates fatty streak formation in the aorta of low-density lipoprotein receptor knockout mice via inhibition of endoplasmic reticulum stress and apoptosis

  • Woo, Minji;Kim, Mijeong;Noh, Jeong Sook;Park, Chan Hum;Song, Yeong Ok
    • Nutrition Research and Practice
    • /
    • v.11 no.6
    • /
    • pp.445-451
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Endoplasmic reticulum (ER) stress is positively associated with atherosclerosis via elevating macrophage cell death and plaque formation, in which oxidative stress plays a pivotal role. Antioxidative, lipid-lowering, and anti-atherogenic effects of kimchi, a Korean fermented vegetable, have been established, wherein capsaicin, ascorbic acid, quercetin, 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid, and lactic acids were identified. In this study, mechanisms of action of kimchi methanol extracts (KME) on fatty streak formation via suppression of ER stress and apoptosis in aorta were examined in low-density lipoprotein receptor knockout mice. MATERIALS AND METHODS: Mice fed a high cholesterol diet with an oral administration of KME (KME group, $200 mg{\cdot}kg-bw^{-1}{\cdot}day^{-1}$) or distilled water (control group) for 8 weeks (n = 20 for group). Plasma lipid and oxidative stress levels were evaluated. Protein expression was measured by western blot assay. Fatty streak lesion size and the degree of apoptosis were examined in the aorta. RESULTS: Compared to the control group, in the KME group, plasma lipids levels were decreased and oxidative stress was alleviated (P < 0.05). Protein expression levels of nuclear factor (erythroid-derived 2)-like 2-mediated antioxidants in aorta were increased whereas those for ER stress markers, glucose regulated protein 78, phospho-protein kinase RNA-like ER kinase, phospho-eukaryotic initiation factor 2 subunit ${\alpha}$, X-box binding protein 1, and C/EBP homologous protein were decreased in the KME group (P < 0.05). Moreover, apoptosis was suppressed via downregulation of phospho-c-Jun N-terminal kinase, bcl-2-associated X protein, caspases-9, and -3 with a concomitant upregulation of anti-apoptotic protein, B-cell lymphoma 2 (P < 0.05). Fatty streak lesion size was reduced and the degree of apoptosis was less severe in the KME group (P < 0.05). CONCLUSIONS: In conclusion, antioxidant activity of KME might prevent fatty streak formation through, in part, inhibition of ER stress and apoptosis in aortic sinus where macrophages are harbored.

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

Effect of ${\alpha}-spinasterol$ Extracted from Phytolacca americanna on the Apoptosis of U937 cell line (상륙에서 추출한 ${\alpha}-spinasterol$의 백혈병세포주(U937) 자멸사 유도 효능)

  • Yang, Jun-Seok;Jeong, Sang-Hun;Kim, Ho;Han, Ung;Jin, Jae-Ho;Jung, Il-Kook;Kim, Dae-Keun;Jeong, Seung-Il;Jeong, Han-Sol;Lee, Kwang-Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1108-1117
    • /
    • 2007
  • To investigate the possible mechanism of ${\alpha}-spinasterol$ as a candidate of anti-cancer drug, I examined the effects of ${\alpha}-spinasterol$ on the apoptosis of U937 cells MTT assay, flow cytometric analysis, SDS-polyacrylamide gel electrophoresis, Western blot analysis, and RT-PCR were performed. ${\alpha}-spinasterol$ treatment reduced the cell viablilty of U937 cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death. ${\alpha}-spinasterol$ treatment also reduced the levels of Bcl-xL anti-apoptotic protein expression and increased the levels of caspase-3, p53, pro-apoptotic protein, in U937 cells. After treatment the level of Bcl-xL, anti-apoptotic gene expression was decreased and the level of ICE pro-apoptotic gene expression was increased. These findings suggest that ${\alpha}-spinasterol$ induced the apoptotic cell death via regulation of several growth regulatory gene products. The abbreviations used are: FBS, fetal bovine serum; PBS, phosphate buffered saline; PI, propidium iodide; OD, optical density; DiOC6, 3,3-dihexyloxa carbcyanine iodide; MTT, 3 [4-5-dimethylthiazol-2-yl] -2-diphenyltetrazolium bromide.

Anti-apoptotic Activity of Ginsenoside Rb1 in Hydrogen Peroxide-treated Chondrocytes: Stabilization of Mitochondria and the Inhibition of Caspase-3

  • Na, Ji-Young;Kim, Sok-Ho;Song, Ki-Bbeum;Lim, Kyu-Hee;Shin, Gee-Wook;Kim, Jong-Hoon;Kim, Bum-Seok;Kwon, Young-Bae;Kwon, Jung-Kee
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.242-247
    • /
    • 2012
  • Chondrocyte apoptosis has been recognized as an important factor in the pathogenesis of osteoarthritis (OA). Hydrogen peroxide ($H_2O_2$), which produces reactive oxygen species, reportedly induces apoptosis in chondrocytes. The ginsenoside $Rb_1$ (G-$Rb_1$) is the principal component in ginseng and has been shown to have a variety of biological activities, such as anti-arthritis, anti-inflammation, and anti-tumor activities. In this study, we evaluated the effects of G-$Rb_1$ on the mitochondrial permeability transition (MPT) and caspase-3 activity of chondrocyte apoptosis induced by $H_2O_2$. Cultured rat articular chondrocytes were exposed to $H_2O_2$ with or without G-$Rb_1$ and assessed for viability, MPT, Bcl-xL/Bax expression, caspase-3 activity, and apoptosis. The co-treatment with G-$Rb_1$ showed an inhibition of MPT, caspase-3 activity, and cell death. Additionally, the levels of the apoptotic protein Bax were significantly lower and the levels of the anti-apoptotic protein Bcl-xL were higher compared with $H_2O_2$ treatment alone. The results of this study demonstrate that G-$Rb_1$ protects chondrocytes against $H_2O_2$-induced apoptosis, at least in part via the inhibition of MPT and caspase-3 activity. These results demonstrate that G-$Rb_1$ is a potentially useful drug for the treatment of OA patients.

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun;Xu, Yong-Nan;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.269-279
    • /
    • 2013
  • Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

Neuroprotective Effects of Kaempferol, Quercetin, and Its Glycosides by Regulation of Apoptosis (Kaempferol, quercetin 및 그 배당체들의 apoptosis 조절을 통한 신경세포 보호 효과)

  • Kim, Ji Hyun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.286-293
    • /
    • 2019
  • Alzheimer's disease (AD) is a neurodegenerative disease caused by accumulation of amyloid beta ($A{\beta}$) in the brain. In the present study, we investigated the neuroprotective effects of four flavonoids such as kaempferol, kaempferol-3-O-glucoside, quercetin, and quercetin-3-${\beta}$-D-glucoside against neuronal apoptosis induced by $A{\beta}$ in SH-SY5Y neuronal cells. Treatment with $A{\beta}$ decreased cell viability compared to the non-treated normal group. However, treatment with the four flavonoids increased cell viability in SH-SY5Y cells treated with $A{\beta}$. In addition, we measured the expression of apoptosis-related proteins such as Bcl-2-associated X protein (Bax) and cleaved caspase-9. Treatment with the four flavonoids down-regulated Bax and cleaved caspase-9 in $A{\beta}$-treated SH-SY5Y neuronal cells. Overall, the results of the present study demonstrated the neuroprotective effect of flavonoids by anti-apoptotic activity in $A{\beta}$-induced SH-SY5Y neuronal cells. These results suggest that these four flavonoids would be useful therapeutic and prevention agents for AD.

A Benzylideneacetophenone Derivative Induces Apoptosis of Radiation-Resistant Human Breast Cancer Cells via Oxidative Stress

  • Park, Jeong Eon;Piao, Mei Jing;Kang, Kyoung Ah;Shilnikova, Kristina;Hyun, Yu Jae;Oh, Sei Kwan;Jeong, Yong Joo;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.404-410
    • /
    • 2017
  • Benzylideneacetophenone derivative (1E)-1-(4-hydroxy-3-methoxyphenyl) hept-1-en-3-one (JC3) elicited cytotoxic effects on MDA-MB 231 human breast cancer cells-radiation resistant cells (MDA-MB 231-RR), in a dose-dependent manner, with an $IC_{50}$ value of $6{\mu}M$ JC3. JC3-mediated apoptosis was confirmed by increase in sub-G1 cell population. JC3 disrupted the mitochondrial membrane potential, and reduced expression of anti-apoptotic B cell lymphoma-2 protein, whereas it increased expression of pro-apoptotic Bcl-2-associated X protein, leading to the cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In addition, JC3 activated mitogen-activated protein kinases, and specific inhibitors of these kinases abrogated the JC3-induced increase in apoptotic bodies. JC3 increased the level of intracellular reactive oxygen species and enhanced oxidative macromolecular damage via lipid peroxidation, protein carbonylation, and DNA strand breakage. Considering these findings, JC3 is an effective therapy against radiation-resistant human breast cancer cells.

NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

  • Kim, Dong Yeol;Kim, Han Rae;Kim, Kwang Kon;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.145-150
    • /
    • 2015
  • Continuous intra- and extracellular stresses induce disorder of $Ca^{2+}$ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.