• Title/Summary/Keyword: Bayesian statistical method

Search Result 307, Processing Time 0.021 seconds

Radioactive waste sampling for characterisation - A Bayesian upgrade

  • Pyke, Caroline K.;Hiller, Peter J.;Koma, Yoshikazu;Ohki, Keiichi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.414-422
    • /
    • 2022
  • Presented in this paper is a methodology for combining a Bayesian statistical approach with Data Quality Objectives (a structured decision-making method) to provide increased levels of confidence in analytical data when approaching a waste boundary. Development of sampling and analysis plans for the characterisation of radioactive waste often use a simple, one pass statistical approach as underpinning for the sampling schedule. Using a Bayesian statistical approach introduces the concept of Prior information giving an adaptive sample strategy based on previous knowledge. This aligns more closely with the iterative approach demanded of the most commonly used structured decision-making tool in this area (Data Quality Objectives) and the potential to provide a more fully underpinned justification than the more traditional statistical approach. The approach described has been developed in a UK regulatory context but is translated to a waste stream from the Fukushima Daiichi Nuclear Power Station to demonstrate how the methodology can be applied in this context to support decision making regarding the ultimate disposal option for radioactive waste in a more global context.

A Discrete Time Approximation Method using Bayesian Inference of Parameters of Weibull Distribution and Acceleration Parameters with Time-Varying Stresses (시변환 스트레스 조건에서의 와이블 분포의 모수 및 가속 모수에 대한 베이시안 추정을 사용하는 이산 시간 접근 방법)

  • Chung, In-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1331-1336
    • /
    • 2008
  • This paper suggests a method using Bayesian inference to estimate the parameters of Weibull distribution and acceleration parameters under the condition that the stresses are time-dependent functions. A Bayesian model based on the discrete time approximation is formulated to infer the parameters of interest from the failure data of the virtual tests and a statistical analysis is considered to decide the most probable mean values of the parameters for reasoning of the failure data.

  • PDF

A BAYESIAN METHOD FOR FINDING MINIMUM GENERALIZED VARIANCE AMONG K MULTIVARIATE NORMAL POPULATIONS

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.411-423
    • /
    • 2003
  • In this paper we develop a method for calculating a probability that a particular generalized variance is the smallest of all the K multivariate normal generalized variances. The method gives a way of comparing K multivariate populations in terms of their dispersion or spread, because the generalized variance is a scalar measure of the overall multivariate scatter. Fully parametric frequentist approach for the probability is intractable and thus a Bayesian method is pursued using a variant of weighted Monte Carlo (WMC) sampling based approach. Necessary theory involved in the method and computation is provided.

Understanding Bayesian Experimental Design with Its Applications (베이지안 실험계획법의 이해와 응용)

  • Lee, Gunhee
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1029-1038
    • /
    • 2014
  • Bayesian experimental design is a useful concept in applied statistics for the design of efficient experiments especially if prior knowledge in the experiment is available. However, a theoretical or numerical approach is not simple to implement. We review the concept of a Bayesian experiment approach for linear and nonlinear statistical models. We investigate relationships between prior knowledge and optimal design to identify Bayesian experimental design process characteristics. A balanced design is important if we do not have prior knowledge; however, prior knowledge is important in design and expert opinions should reflect an efficient analysis. Care should be taken if we set a small sample size with a vague improper prior since both Bayesian design and non-Bayesian design provide incorrect solutions.

A BAYESIAN ANALYSIS FOR PRODUCT OF POWERS OF POISSON RATES

  • KIM HEA-JUNG
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.2
    • /
    • pp.85-98
    • /
    • 2005
  • A Bayesian analysis for the product of different powers of k independent Poisson rates, written ${\theta}$, is developed. This is done by considering a prior for ${\theta}$ that satisfies the differential equation due to Tibshirani and induces a proper posterior distribution. The Gibbs sampling procedure utilizing the rejection method is suggested for the posterior inference of ${\theta}$. The procedure is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries. A salient feature of the procedure is that it provides a unified method for inferencing ${\theta}$ with any type of powers, and hence it solves all the existing problems (in inferencing ${\theta}$) simultaneously in a completely satisfactory way, at least within the Bayesian framework. In two examples, practical applications of the procedure is described.

A Bayesian Model-based Clustering with Dissimilarities

  • Oh, Man-Suk;Raftery, Adrian
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.9-14
    • /
    • 2003
  • A Bayesian model-based clustering method is proposed for clustering objects on the basis of dissimilarites. This combines two basic ideas. The first is that tile objects have latent positions in a Euclidean space, and that the observed dissimilarities are measurements of the Euclidean distances with error. The second idea is that the latent positions are generated from a mixture of multivariate normal distributions, each one corresponding to a cluster. We estimate the resulting model in a Bayesian way using Markov chain Monte Carlo. The method carries out multidimensional scaling and model-based clustering simultaneously, and yields good object configurations and good clustering results with reasonable measures of clustering uncertainties. In the examples we studied, the clustering results based on low-dimensional configurations were almost as good as those based on high-dimensional ones. Thus tile method can be used as a tool for dimension reduction when clustering high-dimensional objects, which may be useful especially for visual inspection of clusters. We also propose a Bayesian criterion for choosing the dimension of the object configuration and the number of clusters simultaneously. This is easy to compute and works reasonably well in simulations and real examples.

  • PDF

Bayesian Estimation for Skew Normal Distributions Using Data Augmentation

  • Kim Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.323-333
    • /
    • 2005
  • In this paper, we develop a MCMC method for estimating the skew normal distributions. The method utilizing the data augmentation technique gives a simple way of inferring the distribution where fully parametric frequentist approaches are not available for small to moderate sample cases. Necessary theories involved in the method and computation are provided. Two numerical examples are given to demonstrate the performance of the method.

A Hierarchical Bayesian Model for Survey Data with Nonresponse

  • Han, Geunshik
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.435-451
    • /
    • 2001
  • We describe a hierarchical bayesian model to analyze multinomial nonignorable nonresponse data. Using a Dirichlet and beta prior to model the cell probabilities, We develop a complete hierarchical bayesian analysis for multinomial proportions without making any algebraic approximation. Inference is sampling based and Markove chain Monte Carlo methods are used to perform the computations. We apply our method to the dta on body mass index(BMI) and show the model works reasonably well.

  • PDF

Analysis of Structural Reliability under Model and Statistical Uncertainties: a Bayesian Approach

  • Kiureghian, Armen-Der
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • A framework for reliability analysis of structural components and systems under conditions of statistical and model uncertainty is presented. The Bayesian parameter estimation method is used to derive the posterior distribution of model parameters reflecting epistemic uncertainties. Point, predictive and bound estimates of reliability accounting for parameter uncertainties are derived. The bounds estimates explicitly reflect the effect of epistemic uncertainties on the reliability measure. These developments are enhance-ments of second-moment uncertainty analysis methods developed by A. H-S. Ang and others three decades ago.

  • PDF

Bayesian Multiple Change-point Estimation in Normal with EMC

  • Kim, Jae-Hee;Cheon, Soo-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.621-633
    • /
    • 2006
  • In this paper, we estimate multiple change-points when the data follow the normal distributions in the Bayesian way. Evolutionary Monte Carlo (EMC) algorithm is applied into general Bayesian model with variable-dimension parameters and shows its usefulness and efficiency as a promising tool especially for computational issues. The method is applied to the humidity data of Seoul and the final model is determined based on BIC.