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A BAYESIAN METHOD FOR FINDING MINIMUM
GENERALIZED VARIANCE AMONG K MULTIVARIATE
NORMAL POPULATIONS

Hea-Jung Kim!

ABSTRACT

In this paper we develop a method for calculating a probability that
a particular generalized variance is the smallest of all the K multivariate
normal generalized variances. The method gives a way of comparing K
multivariate populations in terms of their dispersion or spread, because the
generalized variance is a scalar measure of the overall multivariate scatter.
Fully parametric frequentist approach for the probability is intractable and
thus a Bayesian method is pursued using a variant of weighted Monte Carlo
(WMC) sampling based approach. Necessary theory involved in the method
and computation is provided.

AMS 2000 subject classifications. Primary 62H12; Secondary 62F15.
Keywords. Multivarite normal population, generalized variances, vague prior, posterior
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1. INTRODUCTION

The covariance matrix contains the variances of the variables and the co-
variances between pairs of variables and is a multifaceted picture of the overall
variation in a multivariate normal population. Sometimes it is desirable to have
a single numerical value for the overall multivariate scatter. One such measure
is the generalized variance, defined as the determinant of the covariance matrix
(see Press, 1982 and Rencher, 2002 for other measures).

In applications where variability of the multivariate population is of great
practical importance, the generalized variance can be used to rank distinct groups
and populations in order of their dispersion or spread. For example, a certain
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product, such as semiconductor, produced by a number of companies is charac-
terized by a vector of p measurements. Although the same product is produced
on the average, the companies can be distinguished on the basis of their associ-
ated generalized variances. Thus, the buyer can rank the supplying companies
by ranking the normal populations using the generalized variance in an effort to
minimize his chances of receiving a product that is sometimes of unacceptably
poor quality. The usage of the generalized variance has been widely accepted
by statisticians (Grizzle and Allen, 1969; Press, 1982; Rencher, 2002). However,
due to complex distribution involved in inferencing the generalized variance, the
analysis of it is yet to be seen in applied settings.

This paper, therefore, considers how inferences might be made about a pos-
sible differences in the variability of K multivariate normal populations. Par-
ticularly, our aim of this paper is to find minimum generalized variance among
K multivariate normal populations. In comparing generalized variances of K
multivariate normal populations, Np(61,%1), ..., Np(0k,Xk), there are many
measures that could be used besides a linear contrasts log(|3;|) — log(|Xk]),
for example, the ratios |X;|/|Zx|, |X;]'/?/{Zk|'/? and other linear contrasts,
gk =1,...,K; j # k. Unlike the other measures, the ratios |X;|/|Z|, however,
are easy to handle distributionally and computationally. Therefore, we focus on
a Bayesian method for finding the minimum generalized variance in terms of the
ratios. This is done by a sequence of transformations under joint posterior distri-
bution of Ay’s (=2;1’s), precision matrices, to put our problem into calculation
of posterior probability for an event of the ratios. These transformations will
be described in Section 3 based on the distributional results in Section 2. After
the transformation, we are driven to do multidimensional integrations to evalu-
ate the probability that can’t be calculated analytical and numerical evaluation.
As an alternative solution, we develop a weighted Monte Carlo (WMC) method
to compute the probability. Section 4 gives complete description of the Monte
Carlo algorithm, and Section 5 provides an illustrative example. Some concluding
remarks concerning utility of the proposed method will be presented in Section
6.

2. PRELIMINARIES

In multivariate normal theory, Bayesian posterior distribution of a precision
matrix comes out as an Wishart distribution. So that many Bayesian inferences
for the multivariate normal covariance matrices (inverse of the precision matrices)
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involve a function of Wishart matrices. The same case applies to our problem.
To develop necessary theory involved in the problem of our interest, we shall need
to make use of the following lemmas of some functions of Wishart matrices.

2.1. Functions of Wishart matrices

Suppose Si,...,Sk are independently distributed as Wishart distributions
with scale parameter I, and degrees of freedom ny. Each density function of Sg
is

_ fomp/2_pp-1/ap (PN g ((e-p=1)/2, | _ Sk
p(Sk) {2 7 P,,(2)} ISk etr{ kL8>0

and we use the notation S ~ wdW,(I,,ng), £ = 1,..., K, where etr{C} =
exp(tr(C)) and

Fp(C) — 7_(_11(1)—1)/2 ﬁF(C— (.7 - 1))7

, 2
3=1

the p-dimensional gamma function. For Sy ~ id W,(I,,nk), let E};l S, = T.T;
where T; is an upper-triangular p x p matrix with positive diagonal matrix. If
we make the transformations

R; = T;—1<isk)T;1 (2.1)

k=1

in Sg’s, 1 =1,..., K — 1, we obtain the following lemmas.

LEmMmA 2.1. Ry, ¢t =1,...,K — 1, are independently distributed as a multi-
variate Beta I distribution, Bi(p;y _1 nk/2,nit1/2), with density given by
!Ri[(2§;=1 "k—P—l)/QIIP — R;|(nr1—p—1)/2
5p(22:1 ng/2,ni41/2)

where Bp(a,b) = I'p(a)lp(b)/Tp(a +b). Here 0 < R; < I, denotes that R; and
I, — R; are symmetric positive definite matrices.

f(Ri)

, 0<R; <, (2.2)

PrOOF. Theorem 3.3.1 of Muirhead (1982) says that Ry ~ By(p;n1/2,n2/2),
and is independent of T and S3. So that Ry is independent of Ro, a function of
T; and S3. Now T and S3 are independent and distributed as Wy(I,,n1 + no)
and Wy(I,,n3). Thus, from the theorem, Ry ~ By(p; (n1 + n2)/2,n3/2) and R,
is independent of Ty and S4. This implies that R, independent of R3. Similar
argument applies to prove the independence of all the R;’s. U
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LEMMA 2.2 (Muirhead, 1982). If R; ~ Br(p; Y i_, nx/2,n:41/2), the joint
density of the latent roots Ai,..., A, of R, is

; -1
e @) (28]

p

p i e . .
<11 {(AZ)‘Z“=1 R Y 2} [T (i -x),
14

u<v

wherel>/\1i>--->/\;,>0.

Above distributions lead to multivariate analogs of the Beta distribution.
Some of these distributions arise naturally in various multivariate problems, e.g.,
multivariate analysis of variance tests, sphericity test and multivariate slippage
problems (see Box and Tiao, 1992; Huzurbazar and Butler, 1998).

3. BAYESIAN METHOD

3.1. The posterior distribution

Suppose X(k),. .. , X n,(k) are independent p-variate observations from N, (6,
A;l), k=1,...,K, where A; = 2;1 is the precision matrix. Let

Ny X-(k) N,
X(k) =) o and Vi= X k) — X (k) H{X; (k) — X(k)}.
j=1 j=1

Then the joint pdf of X(k)’s and V}’s is proportional to

K
T Vil emP=202 Ay | Ve 2etr {«%Ak [vk + N {X(k) — 6} {X (k) — ek}’] } :
k=1

To assure very little information is contributed to the analysis by a subjective
prior density, we assume diffuse prior

K
p(01, N 7, ST ,AK) x H ‘Akl—(P-H)/Q'
k=1
The joint posterior density of the parameters is proportional to

K
H lAkl(Nk—P—l)/getr {—%Ak [Vk + Nk{i(k) - Ok}{f(k) - Bk}'] } . (3.1)
k=1
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Integrating (3.1) with respect 8;’s, we have the marginal posterior distribution
of Ak:
Ak] (X(k), Vi) ~ W, (Vitng), ng>p, (3.2)

a Wishart distribution with scale parameter V,;l and degrees of freedom ny =
Ne—-1,k=1,...,K.

THEOREM 3.1. Let S = Vi/?AVY? k=1,...,K. Then R;’s defined by
(2.1) are independent with R; ~ By(p; Zk:l nk/2,nz+1/2), i=1,...,K~1. For

each 1, the joint posterior distribution of eigen values, /\’i, ey )\; of R; is
P : (ot —p—
p(N|Data) = ¢; H ()\2)(2;@1 ng—p—1)/2 (1 _ )\§)(n1+1 p—1)/2
Z
X H = XE) I(AY), (3.3)
u<v

where A* = (Ag, y Ay I(AY) = I(1 > X > -+ > X, > 0), an indicator
function, ¢; = 7P /2/{F (p/2) By (XL nk/2,mi41/2)}, and n; = N; — 1.

1/2

PRrRoOOF. Note from (3.2) that V Ale/2 ~ Wy (I, Ny, —1) are independent
I

for k = 1,..., K. Applying the distribution of Vl/“zAlelc/2 to Lemma 2.1 and
Lemma 2.2, we have the result. O
COROLLARY 3.1. For fized j, j = 1,..., K, the posterior ezpectation of a

quantity of form h(ﬂ,ﬁ(:l’k#lﬁk|/|2j|) is obtained from

K-1

AL AETY TT p(AHData) OAY - - - 9AK—1 3.4
/W_l) /mn( [[»¥ (3.4)
where h(ﬂ{f:l’k#j ag) denotes h(ai,...,aj-1,aj41,...,axK) and

(AL, AK=T) = h< ﬁ Vil Iz (1= X0 [Ty (T2 MZ)).
k=1 k#j Vil TThzy (1= X7 THZE (T2 A

PRrROOF. From the relation between S;’s and R;’s, we can see that

S _Ril Sy _ [Rul[Rs| Sl _ IT (Rl
S| [T, —Ral’ [S3] I, —Ral”"""[Sk| I, —Rg_q|
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Since |Si| = |Vi||Ak|, the above equations yield

— k—1 i
1Dk A IVRITTES IR Vil TTiey (TTh=y ML)

= = = (3.5)
1Z10 Akl Vil = Rea] (VI TTO_, (1= A7)
for k =2,...,K. Thus, for j # k, (3.5) yields
j—1\ TTk—1 )

Bul _ Vil T (- 97 T2 (T, X)

=51 VI (1- A7) Hfz_ll (T Afz)7
a function of Al,..., XX =1, Moreover, Theorem 3.1 says that the posterior dis-
tributions of Al,..., A%~ are independent. These gives the result. |

3.2. Posterior probability of min |X;| = |X;]
The distribution (3.4) enables us to obtain various integral-type posterior

quantities of |X|/|3;|’s. Especially the posterior probability of a set ﬂfle’k#
{I2k]/|2;| € A;} is obtained from (3.4) if we set

K K

(N i) =1 N (=i ),

k=1.k#j k=1k#]

where 1[-] denotes the indicator function. When we take A; = {|Z;|/|Z;];
|Ze|/IZ5] > 1, k,j = 1,...,K; k # j} in the indicator function, (3.4) gives
the posterior probability of min|Xj| = |X;|. Therefore,

pmin(j) = p(minlEkl = |2j| \Data)
K-1
= L AEHTT p(AY Data)aAl---9AK (3.6
/1(,\"‘1)/1()\1)771( ' H (N ) (3.6)

i=1

where

K S .
Vel TE_ (L= X)) TS (TR AL)
N (M e e =)

An analytic evaluation of the probability is not available because the posterior
distribution ]_[-K_llp(/\i] Data) in (3.4) is complicated. In this regard, a Monte

1=
Carlo method, in particular, a variant of weighted Monte Carlo approach by Chen

and Shao (1999) may naturally serve as an alternative solution for calculating the
probability. The approach will be described in the next section.

n;(Al,...,AK—1)=1[
k=1k#j
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4. A WEIGHTED MONTE CARLO METHOD

4.1. Importance sampling

Suppose that {Ai t=1,...,m; 1 =1,..., K—1} is a simulated sample from

an appropriate 1mportance function g(A) = HK 11 gi(A). Write the importance

sampling weight as ‘
—1 p()\zt)| Data)

K
Wy = _ 7
o= 113050

Then, the weighted Monte Carlo (WMC) estimator of the posterior probability
(3.6) is given by

(4.1)

) = 20 N A ) (42)
min 22711 w 3

where Pnin(j) = p(min |Xg| = |X;| [ Data). Since

K-1 ]
(5 — ()1 K-1\1 _ x(y\1 K-1 ilp(A’|Data)
Pmin(f) = Ep{T)J(A se s A )} = Eg{n]()\ D § ) HZ : gl()\l) }

for the function 7];(/\1, ..., A1) defined in (3.6), Geweke (1989) showed that

Panin(i) =5 prin(i)s §=1,.... K, (4.3)
as m — oo where Aél),...,A’('m) are iid from g;(\"). Notice that (4.2) gives a

Monte Carlo estimate of the posterior probability using #id samples from the
importance distribution in such a way that Hfil p(A¥| Data) and Hl 1 ey
need only be known up to a constant of proportionality. The simulation standard
error of pmin(j) is important, since it provides the magnitude of the simulation
accuracy of the estimator puyin (7).

Let U; = w(t)n;()\gt),...,/\(’f)—l), Si = w and V; = Uy — SiEp{n;(A},...,
AK _1)}. If the variances of U; and V; are both finite, then the standard error of
Pmin(4) can be calculated using the ratio estimate as in finite population sampling
(Ripley, 1987, p. 158). The V;’s are iid random variables with zero mean and finite
variance. The variance of V; can be estimated by 53, = m™! >y 173. The law
of large numbers implies that m~1/2 >oie, Vi is asymptotically normal, N(0,0%,),
and that

o . . m-Y2$m v,
! {Pain () — Pmin(4)} = F%*;rf% — N(0,0?),
t=1
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where 02 = 02/S? and S = E(S)). It can be estimated by 5% = 5%,/:9\2 with S =

m~ 1y w(y). The asymptotic variance of prin(j) can be estimated by m~152,
In the calculation of 5%, we can use pmi(j) for the unknown Ep{n;(/\l, AR

4.2. Choice of importance distribution

As one would expect, (4.2) will converge faster and generally be better be-
haved the closer the importance function is to the joint posterior distribution
Hz 1 ' p(A!| Data). For this reason, choosing a good candidate is the main issue
in applications of importance sampling.

Apart from J(\}) = u<v()\‘ AL}, the density in (3.3) has the shape of the
joint density of order statistics from p independently and identically distributed
Beta((zzz1 ng —p+1)/2,(nig1 — p+ 1)/2) variates. This similarity in shape is
exploited in developing the importance sampling scheme. Noticing from Theorem
3.1 that A, i = 1,..., K — 1, are independent, the most natural candidate for
the importance distribution, say NIF, is the corresponding distribution of K — 1
independent sets of ordered beta variates:

K-1 p

H gl AZ)O( H H{ )\z (Ek 1 k~p— 1)/2( _}\i)(”i+1—1’—1)/2}[()‘i)’

1=1 u=1
so that
H i, K~1
p(min[Ek[:]EjHData ==l *p g{n*()\ S AKh H J(A },
=1
where E, is the expectation over g(A) and

K-1 p
T3 g — 2p +2)) }

o = ! .
" I:Ilp{( —-p+1))

Zk (ke —p+ 1))F( (it1 —

Huzurbazar and Butler (1998) discussed the inefficiency of the importance distri-
butions. They showed that the inefficiency arose in factor J(A") =[] <U()\z —AY),
and the factor tends to be larger when A* is more spread out over the range (0, 1)
and relatively evenly spaced. Then they suggested two modified importance
functions of A* to improve the the efficiency of the importance sampling proce-
dure. One modification reduces the degrees of freedom of the beta variates to
increase their variance. They showed that a symmetric betas, Beta(df, df), with
1.5 < df < 2 produced best result. The other entails sampling every r* order
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statistic from a sample of (p — 1)r 4+ 1 beta variates with r > 2 (see Huzurbazar
and Butler, 1998 for the modified importance function; MIF).

In this subsection we suggest another importance function denoted by SIF
(suggested importance function):

T T
1=1 u=1
where I*(AY) = I(1 > X, > --- > AL > 0 I[(J(A) >a), i=1,...,K — 1. A new
feature of SIF is that we can increase variance of the beta variates by controlling
the value of @, 0 < « < 1, increasing the value of J(A'). This takes care
of the assumption that R;’s are positive definite and non-intraclass structured
symmetric matrices, i.e., the constraint J(A!) > « enables us to avoid near
singularity and near intraclass structure problems in R;’s, so that it eliminates
the space of A’ from the importance sampling where P(A?| Data) ~ 0.
Using the inequality among arithmetic, geometric, and harmonic means (cf.
Casella and Berger, 2002, p. 191), we see that

(L) e < {0

= u<v

where the equality of the relation holds for a constant value of A2 =\ for allu > v.
This relation gives a guideline for choosing a proper value of a. To guarantee
that the constraint space should not be small, we may choose the value of «
avoiding only the case where all the \!’s are clustered in the vicinity of one point.
One choice is a = (1/p)P®=1)/2 and it is obtained from the above inequality by
setting AY, — A = 1/p for all u > v. Under SIF, the important sampling scheme
is sampling order statistics from K — 1 independent sequences of Beta(a;, b;)
distributions, ¢ = 1,...,K — 1, with additional constraint J(A},) > «. Here
ai = (3 poynk —p+1)/2,b; = (nj41 —p+1)/2 and ’\Et) = ()\g(t),...,)\;(t))’.
A simple accept/reject algorithm applies for generating the constrained Beta
variates vector A’@. In this procedure, the weight function in (4.2) is the same as
that obtained from using g(A). It reduces to

K—1
wy = [ (M) (4.4)
=1

where J(A{y) = [Tho, (Aypy = Nogy)-
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FIGURE 4.1 Importance sampling using NIF, MIF and SIF. Horizontal azis shows number of
importance samples on a log scale. Vertical azis shows three weighted MC estimates, |R1|’s. The
horizontal line indicates the true value of |R1|.

To give a simple comparison among the importance functions (NIF, MIF and
SIF), we evaluated |R;| using the weighted MC method, where R) is a 3 x 3
matrix defined in Theorem 3.1. The posterior quantity to evaluate is

3
/}\1 1 M.p(A'| Data)dAl,

u=1

where A = (A1, A}, \}) is the vector of eigen values of R;. True value of |R|
is 0.1351 and is obtained from a set of two independent samples generated from
N3(0,13) and N3(0,1.21I3). The size of each sample is N = 100. The results of
weighted MC estimation using NIF, MIF, and SIF with a = (1/3)® are shown in
Figure 4.1. The horizontal axis shows the number (m) of importance samples on
a log scale. From the figure we see that weighted MC estimates, lf{1|’s, of the
three samplers have settled down after about m=>5,000 importance samples. From
Figure 4.1, clearly SIF is better than the other importance functions. Weighted
MC estimate using SIF sampler settled down closer to the true value than the
others did. When m = 5,000 importance samples are used to estimate |R;|,
the mean squared errors (MSE) of SIF, MIF, and NIF sampler estimates are
0.269%1076, 97.1x107% and 105.4x1078, respectively. Therefore, this simple
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example illustrates that SIF is a proper and an appealing importance function.

5. ILLUSTRATIVE EXAMPLES

The goal of this section is to study the effectiveness of the posterior probability
in comparing K generalized variances and to identify some situations where one
would expect improvement in the Monte Carlo method.

5.1. A simulation study

To apply and illustrate our methodology, we consider the data generated
from K = 5 multivariate normal populations. Since a linear transformation
leaves the posterior probabilities pmin(j)}, 7 = 1,..., K, invariant, there is no
loss of generality in considering the case II; ~ N,(0,I + D;), ji* population
distribution. So that the first population has the minimum generalized variance.
This canonical form is obtained via the transformation suggested by Dunn and
Holloway (1967):

Y, = AR VA2, - ),

where A; is an orthogonal matrix such that A}3, 1/QEJ]-Eil_l/QA]- =1+Dj, a
diagonal matrix. Each experiment generates N; observation from the five multi-
variate normal populations with D; = (j — 1) x 6I,, j = 1,..., K. This experi-
ment is replicated 200 times. For each experiment, with m = 20, 000 importance
sample size, the suggested posterior probability pmin(1) is calculated for each of

the three importance functions (NIF, MIF, SIF) using a variety of parameters,

TABLE 5.1 The mean and standard deviation (in parenthesis) of Pmin(1) obtained from 200

replicates
§=20.1 d=0.5
N »p NIF MIF SIF NIF MIF SIF
20 3 0.4099 0.4551 0.4592 0.8587 0.8704 0.9055
(0.3206) (0.3543) (0.3126) (0.2099) (0.2223) (0.1904)
7 0.5976 0.5494 0.6103 0.9775 0.9701 0.9799
(0.3963) (0.4001) (0.3933) (0.1065) (0.1413) (0.0988)
100 3 0.6904 0.7280 0.7449 0.9974 0.9983 0.9997
(0.3320) (0.3221) (0.2886) (0.0240) (0.0139) (0.0018)
7 0.8798 0.8531 0.8924 0.9999 1.0000 1.0000
(0.2417)  (0.2966) (0.2292) | (> 0.0001) (> 0.0001) (> 0.0001)
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p, 0, N, and o = (l/p)”(p“l)/2 in the SIF, where Ny =--- = N; = N.

The simulation results show that the suggested importance sampling proce-
dure uniformly yields ppmin(1) to have the highest posterior probability and it is
tabulated in Table 5.1. In this regard, the procedure is a useful methodology that
allows for finding a population having minimum generalized variance among K
multivariate normal populations. The table also contrasts the procedures each
using three different importance functions (NIF, MIF, SIF). In order to judge the
efficiency of the procedures, the standard deviations of Py (1) are compared. In
all the examples we considered, importance distributions based on SIF scheme
gave the best results.

5.2. A data ezample

To apply and illustrate our methodology, we consider the remote-sensing
data on crops in SAS/STAT examples. The observations are grouped into five
crops: clover, corn, cotton, soybeans, and sugar beets with sample sizes N; = 11,
Ny = 7, N3 = Ny = N5 = 6, respectively. Four measures called X1-X4 make

up the descriptive variables. Their generalized variances are | V| = 10%¢?3-64618

|Va| = 641113472 | V5| = 541323569 |y, | = 541245263 |7 | = 541776293 T
importance distribution was chosen so that parameter « in the SIF was allowed
to assume « = (1/p)?P~1/2 = (1/4)%. Under the SIF, the suggested procedure
with m = 20,000 yielded the posterior probabilities listed in Table 5.2. For a
reference, the table also contains the posterior probabilities obtained from using
NIF. The table notes that, among the five crops, clover has the minimum gener-
alized variance.

TABLE 5.2 Estimated posterior probabilities and their standard errors

Puin(l)  Pmin(2)  Pmin(3)  Pmin(4)  Pmin(5)
SIF | 0.0000 08361  0.0457  0.1182  0.0000
(0.0000)  (0.0584) (0.0176) (0.0301)  (0.0000)
NIF | 0.0000 07312  0.1942  0.0746  0.0000
(0.0000)  (0.0632) (0.0596) (0.0361)  (0.0000)

6. CONCLUDING REMARKS

In this paper we propose a weighted Monte Carlo method for estimating pos-
terior probability of a particular population has minimum generalized variance
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among K populations considered. The probability is a useful criterion for ranking
the dispersion or spread of K multivariate normal populations. The methodol-
ogy proposed in this paper can easily extended to inference integer-type posterior
quantities of functions of eigenvalues. An immediate examples are multiple com-
parison of K generalized variances (see Kim, 2000 for the univariate case) and
calculating Bayesian highest posterior density interval for “the proportion of vari-
ance explained” in principal component analysis. Although we have not pursued
these in this paper, these are certainly worthy to be investigated.
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