• Title/Summary/Keyword: Bayesian design

Search Result 200, Processing Time 0.022 seconds

Context Management of Conversational Agent using Two-Stage Bayesian Network (2단계 베이지안 네트워크를 이용한 대화형 에이전트의 문맥 관리)

  • 홍진혁;조성배
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.1
    • /
    • pp.89-98
    • /
    • 2004
  • Conversational agent is a system that provides users with proper information and maintains the context of dialogue on the natural language. Analyzing and modeling process of user's query is essential to make it more realistic, for which Bayesian network is a promising technique. When experts design the network for a domain, the network is usually very complicated and is hard to be understood. The separation of variables in the domain reduces the size of networks and makes it easy to design the conversational agent. Composing Bayesian network as two stages, we aim to design conversational agent easily and analyze user's query in detail. Also, previous information of dialogue makes it possible to maintain the context of conversation. Actually implementing it for a guide of web pages, we can confirm the usefulness of the proposed architecture for conversational agent.

Bayesian Estimation in Bioequivalence Study

  • Lee, Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1095-1102
    • /
    • 2011
  • The classical two-period, two-sequence crossover design is no longer sufficient to assess various demands in a bioequivalence study. For instance, to estimate the within-subject and between-subject variances of test and reference formulations separately, it is necessary to use a replicate design in which each subject receives at least the reference formulation in two periods. Several designs were studied to satisfy the demands. It is provided a unified Bayesian approach applicable to those study designs. The benefit of the method in the bioequivalence study is discussed.

Bayesian Reliability Analysis Using Kriging Dimension Reduction Method (KDRM) (크리깅 기반 차원감소법을 이용한 베이지안 신뢰도 해석)

  • An, Da-Wn;Choi, Joo-Ho;Won, Jun-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.602-607
    • /
    • 2008
  • A technique for reliability-based design optimization(RBDO) is developed based on the Bayesian approach, which can deal with the epistemic uncertainty arising due to the limited number of data. Until recently, the conventional RBDO was implemented mostly by assuming the uncertainty as aleatory which means the statistical properties are completely known. In practice, however, this is not the case due to the insufficient data for estimating the statistical information, which makes the existing RBDO methods less useful. In this study, a Bayesian reliability is introduced to take account of the epistemic uncertainty, which is defined as the lower confidence bound of the probability distribution of the original reliability. In this case, the Bayesian reliability requires double loop of the conventional reliability analyses, which can be computationally expensive. Kriging based dimension reduction method(KDRM), which is a new efficient tool for the reliability analysis, is employed to this end. The proposed method is illustrated using a couple of numerical examples.

  • PDF

Assessment of uncertainty associated with parameter of gumbel probability density function in rainfall frequency analysis (강우빈도해석에서 Bayesian 기법을 이용한 Gumbel 확률분포 매개변수의 불확실성 평가)

  • Moon, Jang-Won;Moon, Young-Il;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.411-422
    • /
    • 2016
  • Rainfall-runoff modeling in conjunction with rainfall frequency analysis has been widely used for estimating design floods in South Korea. However, uncertainties associated with underlying distribution and sampling error have not been properly addressed. This study applied a Bayesian method to quantify the uncertainties in the rainfall frequency analysis along with Gumbel distribution. For a purpose of comparison, a probability weighted moment (PWM) was employed to estimate confidence interval. The uncertainties associated with design rainfalls were quantitatively assessed using both Bayesian and PWM methods. The results showed that the uncertainty ranges with PWM are larger than those with Bayesian approach. In addition, the Bayesian approach was able to effectively represent asymmetric feature of underlying distribution; whereas the PWM resulted in symmetric confidence interval due to the normal approximation. The use of long period data provided better results leading to the reduction of uncertainty in both methods, and the Bayesian approach showed better performance in terms of the reduction of the uncertainty.

Reliability analysis of nuclear safety-class DCS based on T-S fuzzy fault tree and Bayesian network

  • Xu Zhang;Zhiguang Deng;Yifan Jian;Qichang Huang;Hao Peng;Quan Ma
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1901-1910
    • /
    • 2023
  • The safety-class (1E) digital control system (DCS) of nuclear power plant characterized structural multiple redundancies, therefore, it is important to quantitatively evaluate the reliability of DCS in different degree of backup loss. In this paper, a reliability evaluation model based on T-S fuzzy fault tree (FT) is proposed for 1E DCS of nuclear power plant, in which the connection relationship between components is described by T-S fuzzy gates. Specifically, an output rejection control system is chosen as an example, based on the T-S fuzzy FT model, the key indicators such as probabilistic importance are calculated, and for a further discussion, the T-S fuzzy FT model is transformed into Bayesian Network(BN) equivalently, and the fault diagnosis based on probabilistic analysis is accomplished. Combined with the analysis of actual objects, the effectiveness of proposed method is proved.

Design of Time-varying Stochastic Process with Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M.Sami;Lee, Kwon-Soon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.543-548
    • /
    • 2007
  • We present a dynamic Bayesian network (DBN) model of a generalized class of nonstationary birth-death processes. The model includes birth and death rate parameters that are randomly selected from a known discrete set of values. We present an on-line algorithm to obtain optimal estimates of the parameters. We provide a simulation of real-time characterization of load traffic estimation using our DBN approach.

Performance of a Bayesian Design Compared to Some Optimal Designs for Linear Calibration (선형 캘리브레이션에서 베이지안 실험계획과 기존의 최적실험계획과의 효과비교)

  • 김성철
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.1
    • /
    • pp.69-84
    • /
    • 1997
  • We consider a linear calibration problem, $y_i = $$\alpha + \beta (x_i - x_0) + \epsilon_i$, $i=1, 2, {\cdot}{\cdot},n$ $y_f = \alpha + \beta (x_f - x_0) + \epsilon, $ where we observe $(x_i, y_i)$'s for the controlled calibration experiments and later we make inference about $x_f$ from a new observation $y_f$. The objective of the calibration design problem is to find the optimal design $x = (x_i, \cdots, x_n$ that gives the best estimates for $x_f$. We compare Kim(1989)'s Bayesian design which minimizes the expected value of the posterior variance of $x_f$ and some optimal designs from literature. Kim suggested the Bayesian optimal design based on the analysis of the characteristics of the expected loss function and numerical must be equal to the prior mean and that the sum of squares be as large as possible. The designs to be compared are (1) Buonaccorsi(1986)'s AV optimal design that minimizes the average asymptotic variance of the classical estimators, (2) D-optimal and A-optimal design for the linear regression model that optimize some functions of $M(x) = \sum x_i x_i'$, and (3) Hunter & Lamboy (1981)'s reference design from their paper. In order to compare the designs which are optimal in some sense, we consider two criteria. First, we compare them by the expected posterior variance criterion and secondly, we perform the Monte Carlo simulation to obtain the HPD intervals and compare the lengths of them. If the prior mean of $x_f$ is at the center of the finite design interval, then the Bayesian, AV optimal, D-optimal and A-optimal designs are indentical and they are equally weighted end-point design. However if the prior mean is not at the center, then they are not expected to be identical.In this case, we demonstrate that the almost Bayesian-optimal design was slightly better than the approximate AV optimal design. We also investigate the effects of the prior variance of the parameters and solution for the case when the number of experiments is odd.

  • PDF

A Design of FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) using Naive Bayesian and Data Mining (나이브 베이지안과 데이터 마이닝을 이용한 FHIDS(Fuzzy Logic based Hybrid Intrusion Detection System) 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • This paper proposes an FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) design that detects anomaly and misuse attacks by using a Naive Bayesian algorithm, Data Mining, and Fuzzy Logic. The NB-AAD(Naive Bayesian based Anomaly Attack Detection) technique using a Naive Bayesian algorithm within the FHIDS detects anomaly attacks. The DM-MAD(Data Mining based Misuse Attack Detection) technique using Data Mining within it analyzes the correlation rules among packets and detects new attacks or transformed attacks by generating the new rule-based patterns or by extracting the transformed rule-based patterns. The FLD(Fuzzy Logic based Decision) technique within it judges the attacks by using the result of the NB-AAD and DM-MAD. Therefore, the FHIDS is the hybrid attack detection system that improves a transformed attack detection ratio, and reduces False Positive ratio by making it possible to detect anomaly and misuse attacks.

Design and Implementation of Travel Mode Choice Model Using the Bayesian Networks of Data Mining (데이터마이닝의 베이지안 망 기법을 이용한 교통수단선택 모형의 설계 및 구축)

  • Kim, Hyun-Gi;Kim, Kang-Soo;Lee, Sang-Min
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.77-86
    • /
    • 2004
  • In this study, we applied the Bayesian Network for the case of the mode choice models using the Seoul metropolitan area's house trip survey Data. Sex and age were used lot the independent variables for the explanation or the mode choice, and the relationships between the mode choice and the travellers' social characteristics were identified by the Bayesian Network. Furthermore, trip and mode's characteristics such as time and fare were also used for independent variables and the mode choice models were developed. It was found that the Bayesian Network were useful tool to overcome the problems which were in the traditional mode choice models. In particular, the various transport policies could be evaluated in the very short time by the established relation-ships. It is expected that the Bayesian Network will be utilized as the important tools for the transport analysis.

Time Reduction for Package Warpage Optimization based on Deep Neural Network and Bayesian Optimization (심층신경망 및 베이지안 최적화 기반 패키지 휨 최적화 시간 단축)

  • Jungeon Lee;Daeil Kwon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.50-57
    • /
    • 2024
  • Recently, applying a machine learning to surrogate modeling for rapid optimization of complex designs have been widely researched. Once trained, the machine learning surrogate model can predict similar outputs to Finite Element Analysis (FEA) simulations but require significantly less computing resources. In addition, combined with optimization methodologies, it can identify optimal design variable with less time requirement compared to iterative simulation. This study proposes a Deep Neural Network (DNN) model with Bayesian Optimization (BO) approach for efficiently searching the optimal design variables to minimize the warpage of electronic package. The DNN model was trained by using design variable-warpage dataset from FEA simulation, and the Bayesian optimization was applied to find the optimal design variables which minimizing the warpage. The suggested DNN + BO model shows over 99% consistency compared to actual simulation results, while only require 15 second to identify optimal design variable, which reducing the optimization time by more than 57% compared to FEA simulation.