In order to estimate parameter uncertainty of hydrological models, the consideration of the likelihood functions which provide reliable parameters of model is necessary. In this study, the Bayesian Markov Chain Monte Carlo (MCMC) method with informal likelihood functions is used to analyze the uncertainty of parameters of the SURR model for estimating the hourly streamflow of Gunnam station of Imjin basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of parameters. Moreover, the performance of four informal likelihood functions (Nash-Sutcliffe efficiency, Normalized absolute error, Index of agreement, and Chiew-McMahon efficiency) on uncertainty of parameter is assessed. The indicators used to assess the uncertainty of the streamflow simulation were P-factor (percentage of observed streamflow included in the uncertainty interval) and R-factor (the average width of the uncertainty interval). The results showed that the sensitivities of parameters strongly depend on the likelihood functions and vary for different likelihood functions. The uncertainty bounds illustrated the slight differences from various likelihood functions. This study confirms the importance of the likelihood function selection in the application of Bayesian MCMC to the uncertainty assessment of the SURR model.
The main purpose of this study is to fit catch-per-unit-effort (CPUE) data about Korea chub mackerel (Scomber japonicus) stock with a state-space production (SSP) model, and to provide stock assessment results. We chose a surplus production model for the chub mackerel data, namely annual yield and CPUE. Then we employed a state-space layer for a production model to consider two sources of variability arising from unmodelled factors (process error) and noise in the data (observation error). We implemented the model via script software ADMB-RE because it reduces the computational cost of high-dimensional integration and provides Markov Chain Monte Carlo sampling, which is required for Bayesian approaches. To stabilize the numerical optimization, we considered prior distributions for model parameters. Applying the SSP model to data collected from commercial fisheries from 1999 to 2017, we estimated model parameters and management references, as well as uncertainties for the estimates. We also applied various production models and showed parameter estimates and goodness of fit statistics to compare the model performance. This study presents two significant findings. First, we concluded that the stock has been overexploited in terms of harvest rate from 1999 to 2017. Second, we suggest a SSP model for the smallest goodness of fit statistics among several production models, especially for fitting CPUE data with fluctuations.
우리나라는 수공구조물 설계할 때 강우빈도해석과 강우-유출 모형으로 홍수량을 산정하여 사용하고 있다. 그러나 강우자료의 확률분포 및 자료기간 등에 따른 매개변수 추정에 많은 불확실성이 존재하나 이를 고려한 해석은 이루어지지 않고 있다. 이러한 점에서 Gumbel 분포형과 확률가중 모멘트법을 기준으로 확률강우량의 신뢰구간을 평가함과 동시에 매개변수의 불확실성을 평가하는데 있어서 우수한 성능을 발휘하는 Bayesian방법을 도입하여 서울지역의 확률강우량의 불확실성을 정량적으로 평가하였다. 두 가지 방법의 비교결과 확률가중모멘트법의 신뢰구간이 Bayesian 방법의 불확실성 구간보다 전반적으로 크게 나타났다. 신뢰구간의 경우 정규분포를 따르기 때문에 좌우대칭의 형태를 갖는 반면에 Bayesian 방법의 불확실성은 Gumbel 분포로부터 유도되어, 보다 현실적인 불확실성 평가가 가능하였다. 자료의 구간 및 기간에 따른 확률강우량의 불확실성을 평가한 결과 자료에 증가에 따른 불확실성 감소를 확인할 수 있었으며, Bayesian 방법이 자료 증가에 따른 불확실성 범위 감소가 보다 뚜렷하게 나타나는 것을 확인할 수 있었다.
Evaluating interpolated rainfall uncertainty of hydrological models caused by different interpolation methods for basins where can not fully collect rainfall data are necessary. In this study, the adaptive MCMC method under effects of ILFs was used to analyze the interpolated rainfall uncertainty of the SURR model for Gunnam basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of unknown parameters. In this work, the performance of four ILFs on uncertainty of interpolated rainfall was assessed. The indicators of p_factor (percentage of observed streamflow included in the uncertainty interval) and r_factor (the average width of the uncertainty interval) were used to evaluate the uncertainty of the simulated streamflow. The results showed that the uncertainty bounds illustrated the slight differences from various ILFs. The study confirmed the importance of the likelihood function selection in the application the adaptive Bayesian MCMC method to the uncertainty assessment of the SURR model caused by interpolated rainfall.
Purpose: The study was designed to determine the discriminating ability of a Bayesian network (BN) for predicting risk for pressure ulcers. Methods: Analysis was done using a retrospective cohort, nursing records representing 21,114 hospital days, 3,348 patients at risk for ulcers, admitted to the intensive care unit of a tertiary teaching hospital between January 2004 and January 2007. A BN model and two logistic regression (LR) versions, model-I and .II, were compared, varying the nature, number and quality of input variables. Classification competence and case coverage of the models were tested and compared using a threefold cross validation method. Results: Average incidence of ulcers was 6.12%. Of the two LR models, model-I demonstrated better indexes of statistical model fits. The BN model had a sensitivity of 81.95%, specificity of 75.63%, positive and negative predictive values of 35.62% and 96.22% respectively. The area under the receiver operating characteristic (AUROC) was 85.01% implying moderate to good overall performance, which was similar to LR model-I. However, regarding case coverage, the BN model was 100% compared to 15.88% of LR. Conclusion: Discriminating ability of the BN model was found to be acceptable and case coverage proved to be excellent for clinical use.
본 연구에서는 국내외에서 범용되고 있는 단일강우사상 모형인 미육군공병단의 HEC-1 모형을 이용하여 대청댐 유역의 실측 강우-유출 사상을 중심으로 강우-유출 모의를 수행하였으며, 매개변수 검정에는 실제 대청댐의 시간당 유입량을 기준으로 검정을 실시하였다. HEC-1 모형에는 매개변수를 자동으로 최적화시키는 프로그램이 내장되어 있으나 본 연구의 대상유역과 같이 다수의 소유역이 있는 경우, 매개변수 추정시 매개변수 중 일부는 수렴되지 못하고 발산하는 문제가 있었으며, 첨두유량의 추정능력 역시 저하되는 문제를 보였다. 따라서 이러한 HEC-1 모형의 매개변수의 불확실성을 고려하기 위한 방안으로 Bayesian 모형을 HEC-1모형에 연동시켜 활용하였으며, 기존 HEC-1 강우-유출 모형에 적용할 수 있는 매개변수 최적화 및 불확실성 정량화를 위해 HEC-1 강우-유출 모형 매개변수는 SCS 1개, Clark 단위도 2개를 Bayesian MCMC 기법을 적용하여 매개변수간 조건부확률로 모의발생을 한 후, Bayesian 모형으로부터 각 매개변수의 사후분포(posterior distribution)를 추정하여 사후분포의 추정이 매개변수의 불확실성 정량화를 수행하였다. 본 연구를 통해 제안된 BHEC-1 모형을 대상으로 대청댐 유역에 실측 강우-유출사상에 대해서 모형의 적합성을 평가한 결과, 7개 유역의 21개의 매개변수가 해의 발산 없이 안정된 매개변수 추정이 가능하였다. 한편, Bayesian 모형을 근간으로 하기 때문에 최종결과로서 매개변수들의 사후분포(posterior)의 추정이 가능하여 향후 홍수빈도곡선 유도, 댐 위험도분석과 기후변화 문제와 같은 다양한 수문학적 문제의 연구에 적용 가능할 것으로 전망된다.
Wind fragility analysis provides a quantitative instrument for delineating the safety performance of civil structures under hazardous wind loading conditions such as cyclones and tornados. It has attracted and would be expected to continue to attract intensive research spotlight particularly in the nowadays worldwide context of adapting to the changing climate. One of the challenges encumbering efficacious assessment of the safety performance of existing civil structures is the possible incompleteness of the structural appraisal data. Addressing the issue of the data missingness, the study presented in this paper forms a first attempt to investigate the feasibility of using the expectation-maximization (EM) algorithm and Bayesian techniques to predict the wind fragilities of existing civil structures. Numerical examples of typical linear or hysteretic shear frames are introduced with the wind loads derived from a widely used power spectral density function. Specifically, the application of the maximum a posteriori estimates of the distribution parameters for the story stiffness is examined, and a surrogate model is developed and applied to facilitate the nonlinear response computation when studying the fragilities of the hysteretic shear frame involved.
수문학적 댐 위험도 분석은 복잡한 수문분석과 연계되어 있으며, 기본적으로 수문분석 과정과 모형에 사용되는 입력자료에 대한 불확실성을 평가하는 과정이 필요하다. 그러나 체계적인 불확실성 분석 과정을 통한 댐 위험도 분석 절차에 대한 연구는 상대적으로 적은편이다. 이러한 점에서 본 연구에서는 기존 연구에 대해서 2가지 주요 개선점을 도출하여 댐 위험도 분석에 활용하였다. 첫째, 강우 분석시 매개변수의 불확실성 분석이 가능한 Bayesian 모형 기반의 지역빈도해석 절차를 수립하였다. 둘째, 강우-유출 모형 매개변수의 사후분포를 정량적으로 추정하기 위하여 Bayesian 모형과 연계한 HEC-1모형을도입하였다. 도출된 유입 시나리오를 댐의 수위로 환산하기 위하여 기존 저수지 운영기준에 근거하여 저수지 추적을 수행하였으며, 최종적으로 실행함수를 통하여 수문학적 위험도를 추정하였다. 실제 댐에 대해서 모형의 적합성을 평가하였으며, 초기수위 가정에 따른 수문학적 위험도에 민감도를 평가하였다.
최근 교량구조물의 증가와 더불어 차량 및 선박과 시설물 간의 충돌사고가 발생할 확률이 높아지고 있다. 특히 교량을 구성하는 상부구조와 하부구조 중에서 충돌에 의한 영향은 주로 교각 등의 하부구조가 받을 가능성이 크다. 교각에 차량 혹은 선박이 충돌하게 되면 교량 하부구조에 국부적인 손상을 유발하게 되며, 충돌사고는 훨씬 더 순간적이고 강한 물리적인 질량의 충돌을 동반할 수 있으며, 극단적인 경우 상부구조의 붕괴까지 유발할 수 있다. 그러므로 이 연구에서는 콘크리트 구조물인 교량의 교각과 같은 압축부재에 대한 설계 시 차량 등에 의한 충돌을 고려하고, 차량 충돌하중에 의한 손상지수를 정량적으로 평가하기 위해서 기존의 설계방법을 개선하고 새로운 구조물의 저항성능 평가방법을 정립하기 위하여 동적유한요소해석 프로그램인 LS-DYNA를 이용하여 교각단면, 차량의 충돌각에 따른 충격도, 축력 및 축력비, 콘크리트 강도, 주철근비와 횡방향 철근, 세장비 등을 변화시켜 케이스별 해석을 수행하였다. 이 연구 결과를 통해 콘크리트 구조물의 거동해석 및 설계기법을 Bayesian 통계방법을 이용한 만족도 곡선을 통해 충격하중을 받을 시의 성능 기반형 저항성능 평가방법을 개발하였으며, 이는 실제 충격하중에 의한 구조물의 방호성능 및 설계 시에 적절하게 적용할 수 있을 것으로 판단된다.
주수급자 역할을 하는 건설기업의 부실화는 발주자에게 공사계약 미이행에 따른 피해를 초래할 수 있고, 전문건설업체 및 자재공급업체의 재무건전성에 악영향을 줄 수 있다. 건설업은 프로젝트를 수주하고 진도에 따라 기성을 받는 현금흐름의 재무적 특성이 존재하고, 사업 진행 중의 부실화는 투입한 자금의 손실로 이어질 수 있으므로 건설업체의 부실화 예측은 중요하다. 국내 건설업체의 부실화 예측은 90년도 초 미국에서 개발된 KMV (Kealhofer McQuown and Vasicek)사의 KMV모형으로 수행되는 경우도 있지만, 이 모형은 일반적인 기업 및 은행의 신용위험 평가에 개발되어져 건설기업 예측력에는 부족함이 있다. 또한, KMV값의 부도확률 예측력에 대해서는 분석대상의 기업수 및 데이터의 부족으로 의문점이 지속적으로 제기되고 있다. 따라서 이러한 의문점을 해결하기 위해 기존 부도예측확률모형에 베이지안 확률적 접근법(Bayesian Probabilistic Approach)을 접목하고자 한다. 베이즈 통계학의 사전확률(Prior Probability)만 적절하게 예측가능하다면 적은 정보라도 증거에 대한 조건부 획득으로 신뢰성 있는 사후확률(Posterior Probability)을 예측할 수 있기 때문이다. 이에 본 연구에서는 기존 부도예측확률모형에 베이지안 확률적 접근법을 활용하여 예상부도확률(Expected Default Frequency, EDF)을 측정하고, 기존 모형의 예상부도확률과 비교하여 정확성을 예측하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.