Browse > Article
http://dx.doi.org/10.4334/JKCI.2010.22.4.535

Development of Performance Based Resistance Capacity Evaluation Method for RC Compression Member under Vehicle Impact Load  

Kim, Jang-Ho Jay (Dept. of Civil and Environmental System Engineering, Yonsei University)
Yi, Na-Hyun (Dept. of Civil and Environmental System Engineering, Yonsei University)
Phan, Duc-Hung (Dept. of Civil and Environmental System Engineering, Yonsei University)
Kim, Sung-Bae (Dept. of Civil and Environmental System Engineering, Yonsei University)
Lee, Kang-Won (LNG Tank Technology Center, KOGAS RND Division)
Publication Information
Journal of the Korea Concrete Institute / v.22, no.4, 2010 , pp. 535-546 More about this Journal
Abstract
Recently, the probability of collision accident between vehicles or vessels and infrastructures are increasing at alarming rate. Particularly, collision impact load can be detrimental to sub-structures such as piers and columns. The damaged pier from an impact load of a vehicle or a vessel can lead to member damages, which make the member more vulnerable to impact load due to other accidents which. In extreme case, may cause structural collapse. Therefore, in this study, the vehicle impact load on concrete compression member was considered to assess the quantitative design resistance capacity to improve, the existing design method and to setup the new damage assessment method. The case study was carried out using the LS-DYNA, an explicit finite element analysis program. The parameters for the case study were cross-section variation of pier, impact load angle, permanent axial load and axial load ratio, concrete strength, longitudinal and lateral rebar ratios, and slenderness ratio. Using the analysis results, the performance based resistance capacity evaluation method for impact load using satisfaction curve was developed using Bayesian probabilistic method, which can be applied to reinforced concrete column design for impact loads.
Keywords
compression member; vehicle impact load; Bayesian probabilistic method; satisfaction curve; performance based resistance capacity evaluation method;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 국토해양부, 차량방호 안전시설 실물충돌시험 업무편람, 2001.
2 정영수, 이재훈, 김재관 등, 고속도로 기존교량의 유형별 내진성능 평가를 위한 실험적 연구, 한국도로공사, 2001.
3 Zaouk, A. K., Bedewi, N. E., Kan, C. D., and Marzoughi, D., “Validation of a Non-Linear Finite Element Vehicle Model Using Multiple Impact Data,” Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Crash-worthiness and Occupant Protection in Transportation Systems, ASME, AMD-Vol. 218, New York, 1996, pp. 91-106.
4 ASCE Structural Design for Physical Security: State of the Practice Report, Task Committee on Physical Security, American Society of Civil Engineers, New York, 1999, pp. 4-1-4-53.
5 판덕헝, 이근성, 이나현, 김성배, 김장호, “Baysian 통계법을 활용한 성능기반형 콘크리트 배합설계방법 개발,” 콘크리학회 논문집, 22권, 2호, 2010, pp. 171-177.
6 Shinozuka, M., Feng, M. Q., Lee, J. H., and Naganuma, T., “Statistical Analysis of Fragility Curves,” Journal of Engineering Mechanic, Vol. 126, No. 12, 2000, pp. 1224-1231.   DOI   ScienceOn
7 조판규, 차량충돌에 의한 복합소재 가드레일의 거동 연구, 세종대학교 대학원, 석사학위논문, 2008, pp. 21-39.
8 한국건설기술연구원, 교각 내진성능평가 및 교량 비선형 내진해석프로그램 개발, 2001, pp. 12-31.
9 Cotsovosa, D. M. and Pavlovic, M. N., “Numerical Investigation of Concrete Subjected to High Rates of Uniaxial Tensile Loading,” International Journal of Impact Engineering, Vol. 35, No. 5, 2008, pp. 319-335.   DOI   ScienceOn
10 Georgin, J. F. and Reynouard J. M., “Modeling of Structures Subjected to Impact: Concrete Behavior under High Strain Rate,” Cement Concrete Composites, Vol. 25, 2003, pp. 131-143.   DOI   ScienceOn
11 Bischoff, P. H. and Perry, S. H., “Compressive Behaviour of Concrete at High Strain Rates,” Materials and Structures, Vol. 24, 1991, pp. 425-450.   DOI
12 Malvar, L. J., Crawford, J. E., Wesevich J. W., and Simons D., “A Plasticity Concrete Material Model for DYNA 3D,” International Journal of Impact Engineering, Vol. 19, 1997, pp. 847-873.   DOI   ScienceOn
13 ASCE Task Committee on Blast Resistant Design, Design of Blast Resistant Buildings in Petrochemical Facilities, Task Committee Report on Blast Resistant Design of the Petrochemical Committee of ASCE, 1997, pp. 5-1-5-22.
14 Nam, J. W., Kim, H. J., Kim, S. B., Kim, J. H. J., and Byun, K. J., “Analytical Study of Finite Element Models for FRP Retrofitted Concrete Structure under Blast Loads,” International Journal of Damage Mechanics, Vol. 18, No. 5, 2009, pp. 461-490.   DOI
15 Nemat-Nasser, S. and Deng, H, “Microcrack Interaction and Shear Fault Failure,” International Journal of Damage Mechanics, Vol. 3, No. 1, 1994, pp. 3-37.   DOI
16 Nam, J. W., Kim, H. J., Yi, N. H., Kim, I. S., Kim, J. H. J., and Choi, H. J., “Blast Analysis of Concrete Arch Structures for FRP Retrofitting Design,” Computers and Concrete, Vol. 6, No. 4, 2009, pp. 305-318.   DOI   ScienceOn
17 남진원, 김호진, 김성배, 변근주, “폭발하중을 받는 콘크리트 벽체구조의 HFPB 해석,” 대한토목학회논문집, 27권, 3A호, 2007, pp. 433-442.
18 김호진, 남진원, 김성배, 김장호, 변근주, “폭발하중을 받는 콘크리트 벽체 구조물의 보강성능에 대한 해석적 분석,” 콘크리트학회 논문집, 19권, 2호, 2007, pp. 241-250.
19 Ross, C. A., Tedesco J. W., and Kuennen S. T., “Effects of Strain Rate on Concrete Strength,” ACI Materials Journal, Vol. 92, No.1 1995, pp. 37-47.
20 Li, Q. M. and Meng, H., “About The Dynamic Strength Enhancement of Concrete-like Materials in a Split Hopkinson Pressure Bar Test,” International Journal of Solids and Structures, Vol. 40, 2003, pp. 343-360.   DOI   ScienceOn
21 Krauthammer, T., Shanaa, H. M., and Assadi-Lamouki, A., “Response of Reinforced Concrete Structural Elements to Severe Impulsive Loads,” Computers and Structures, Vol. 53, No. 1, 1994, pp. 119-130.   DOI   ScienceOn
22 Consolazio, G. R. and Cowan, D. R., “Numerically Efficient Dynamic Analysis of Barge Collisions with Bridge Piers,” Journal of Structural Engineering, ASCE, Vol. 131, No. 8, 2005, pp. 1256-1266.   DOI   ScienceOn
23 Sherif El-Tawil, Edward Severino, and Priscilla Fonseca, “Vehicle Collision with Bridge Piers,” Journal of Bridge Engineering, ASCE, Vol. 10, No. 3, 2005, pp. 345-353.   DOI
24 Consolazio, G. R. and Cowan, D. R., “Numerically Efficient Dynamic Analysis of Barge Collisions with Bridge Piers,” Journal of Structural Engineering, ASCE, Vol. 131, No. 8, 2005, pp. 1256-1266.   DOI   ScienceOn
25 Dutta, A. and Mander, J. B., “Rapid and Detailed Seismic Fragility Analysis of Highway Bridges,” Technical Report at Multidisciplinary Center for Earthquake Engineering Research, NY, USA, 2002.
26 NCAC (National Crash Analysis Center), www.ncac.gwu.edu.
27 이나현, 김성배, 김장호, 최종권, “폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (I) 실험수행절차,” 대한토목학회논문집, 29권, 5A호, 2009, pp. 557-564.
28 이나현, 김성배, 김장호, 조윤구, “폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 구조물의 실험 결과,” 대한토목학회논문집, 29권, 5A호, 2009, pp. 565-575.
29 Nam, J. W., Kim, H. J., Kim, S. B., Yi, N. H., and Kim, J. H. J., “Numerical Evaluation of the Retrofit Effectiveness for GFRP Retrofitted Concrete Slab subjected to Blast Pressure,” Composite Structures, Vol. 92, No. 5, 2010, pp. 1212-1222.   DOI   ScienceOn