• 제목/요약/키워드: Bayesian Estimation

검색결과 565건 처리시간 0.024초

Application of Bayesian Calibration for Optimizing Biophysicochemical Reaction Kinetics Models in Water Environments and Treatment Systems: Case Studies in the Microbial Growth-decay and Flocculation Processes (베이지안 보정 기법을 활용한 생물-물리-화학적 반응 동역학 모델 최적화: 미생물 성장-사멸과 응집 동역학에 대한 사례 연구)

  • Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • 제40권4호
    • /
    • pp.179-194
    • /
    • 2024
  • Biophysicochemical processes in water environments and treatment systems have been great concerns of engineers and scientists for controlling the fate and transport of contaminants. These processes are practically formulated as mathematical models written in coupled differential equations. However, because these process-based mathematical models consist of a large number of model parameters, they are complicated in analytical or numerical computation. Users need to perform substantial trials and errors to achieve the best-fit simulation to measurements, relying on arbitrary selection of fitting parameters. Therefore, this study adopted a Bayesian calibration method to estimate best-fit model parameters in a systematic way and evaluated the applicability of the calibration method to biophysicochemical processes of water environments and treatment systems. The Bayesian calibration method was applied to the microbial growth-decay kinetics and flocculation kinetics, of which experimental data were obtained with batch kinetic experiments. The Bayesian calibration method was proven to be a reasonable, effective way for best-fit parameter estimation, demonstrating not only high-quality fitness, but also sensitivity of each parameter and correlation between different parameters. This state-of-the-art method will eventually help scientists and engineers to use complex process-based mathematical models consisting of various biophysicochemical processes.

Bayesian parameter estimation and prediction in NHPP software reliability growth model (NHPP소프트웨어 신뢰도 성장모형에서 베이지안 모수추정과 예측)

  • Chang, Inhong;Jung, Deokhwan;Lee, Seungwoo;Song, Kwangyoon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.755-762
    • /
    • 2013
  • In this paper we consider the NHPP software reliability model. And we deal with the maximum likelihood estimation and the Bayesian estimation with conjugate prior for parameter inference in the mean value function of Goel-Okumoto model (1979). The parameter estimates for the proposed model is presented by MLE and Bayes estimator in data set. We compare the predicted number of faults with the actual data set using the proposed mean value function.

A study on robust regression estimators in heteroscedastic error models

  • Son, Nayeong;Kim, Mijeong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1191-1204
    • /
    • 2017
  • Weighted least squares (WLS) estimation is often easily used for the data with heteroscedastic errors because it is intuitive and computationally inexpensive. However, WLS estimator is less robust to a few outliers and sometimes it may be inefficient. In order to overcome robustness problems, Box-Cox transformation, Huber's M estimation, bisquare estimation, and Yohai's MM estimation have been proposed. Also, more efficient estimations than WLS have been suggested such as Bayesian methods (Cepeda and Achcar, 2009) and semiparametric methods (Kim and Ma, 2012) in heteroscedastic error models. Recently, Çelik (2015) proposed the weight methods applicable to the heteroscedasticity patterns including butterfly-distributed residuals and megaphone-shaped residuals. In this paper, we review heteroscedastic regression estimators related to robust or efficient estimation and describe their properties. Also, we analyze cost data of U.S. Electricity Producers in 1955 using the methods discussed in the paper.

Comparison of Nonparametric Maximum Likelihood and Bayes Estimators of the Survival Function Based on Current Status Data

  • Kim, Hee-Jeong;Kim, Yong-Dai;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.111-119
    • /
    • 2007
  • In this paper, we develop a nonparametric Bayesian methodology of estimating an unknown distribution function F at the given survival time with current status data under the assumption of Dirichlet process prior on F. We compare our algorithm with the nonparametric maximum likelihood estimator through application to simulated data and real data.

Bayesian Estimation for the Multiple Regression with Censored Data : Mutivariate Normal Error Terms

  • Yoon, Yong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.165-172
    • /
    • 1998
  • This paper considers a linear regression model with censored data where each error term follows a multivariate normal distribution. In this paper we consider the diffuse prior distribution for parameters of the linear regression model. With censored data we derive the full conditional densities for parameters of a multiple regression model in order to obtain the marginal posterior densities of the relevant parameters through the Gibbs Sampler, which was proposed by Geman and Geman(1984) and utilized by Gelfand and Smith(1990) with statistical viewpoint.

  • PDF

Bayes Estimation of a Reliability Function for Rayleigh Model

  • Kim, Yeung-Hoon;Sohn, Joong-Kweon
    • Journal of the Korean Statistical Society
    • /
    • 제23권2호
    • /
    • pp.445-461
    • /
    • 1994
  • This paper deals with the problem of obtaining some Bayes estimators and Bayesian credible regions of a reliability function for the Rayleigh distribution. Using several priors for a reliability function some Bayes estimators and Bayes credible sets are proposed and studied under squared error loss and Harris loss. Also the performances and behaviors of the proposed Bayes estimators are examined via Monte Carlo simulations and some numericla examples are given.

  • PDF

Robustness in the Hierarchical Bayes Estimation of Normal Means

  • Kim, Dal-Ho;Park, Jin -Kap
    • Communications for Statistical Applications and Methods
    • /
    • 제6권2호
    • /
    • pp.511-522
    • /
    • 1999
  • The paper considers the problem of robustness in hierarchical bayesian models. In specific we address Bayesian robustness in the estimation of normal means. We provide the ranges of the posterior means under $\varepsilon$-contamination class as well as the density ratio class of priors. For the class of priors that are uniform over a specified interval we investigate the sensitivity as to the choice of the intervals. The methods are illustrated using the famous baseball data of Efron and Morris(1975).

  • PDF

Bayesian Estimation of System & Component Reliability Using Masked Data (마스크 데이터를 이용한 베이지안 추정)

  • 김종걸;박창규
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 한국신뢰성학회 2000년도 추계학술대회
    • /
    • pp.353-362
    • /
    • 2000
  • 다양한 컴포넌트들로 구성된 시스템의 수명 데이터는 시스템 컴포넌트들의 신뢰성을 추정하는데 많이 사용된다. 하지만 비용이나 고장진단의 기술적 문제 때문에 시스템 고장의 정확한 원인을 밝혀내기는 어렵다. 시스템이나 컴포넌트의 수명 데이터 중 정확한 고장원인을 알 수 없는 데이터를 마스크 데이터라 한다. 본 연구는 마스크데이터와 베이지안 추정의 연구방향을 살펴보고, 그리고 고장률의 비정보 사전분포를 이용하여, 컴포넌트가 직렬로 구성된 시스템의 수명 데이터가 마스크 데이터를 갖는 지수분포의 시스템 컴포넌트 고장률을 추정한다.

  • PDF

Bayesian Estimation for Skew Normal Distributions Using Data Augmentation

  • Kim Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.323-333
    • /
    • 2005
  • In this paper, we develop a MCMC method for estimating the skew normal distributions. The method utilizing the data augmentation technique gives a simple way of inferring the distribution where fully parametric frequentist approaches are not available for small to moderate sample cases. Necessary theories involved in the method and computation are provided. Two numerical examples are given to demonstrate the performance of the method.

At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Theoretical Background and Construction of Prior Distribution (Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 이론적 배경과 사전분포의 구축)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • 제41권1호
    • /
    • pp.35-47
    • /
    • 2008
  • The low flow analysis is an important part in water resources engineering. Also, the results of low flow frequency analysis can be used for design of reservoir storage, water supply planning and design, waste-load allocation, and maintenance of quantity and quality of water for irrigation and wild life conservation. Especially, for identification of the uncertainty in frequency analysis, the Bayesian approach is applied and compared with conventional methodologies in at-site low flow frequency analysis. In the first manuscript, the theoretical background for the Bayesian MCMC (Bayesian Markov Chain Monte Carlo) method and Metropolis-Hasting algorithm are studied. Two types of the prior distribution, a non-data- based and a data-based prior distributions are developed and compared to perform the Bayesian MCMC method. It can be suggested that the results of a data-based prior distribution is more effective than those of a non-data-based prior distribution. The acceptance rate of the algorithm is computed to assess the effectiveness of the developed algorithm. In the second manuscript, the Bayesian MCMC method using a data-based prior distribution and MLE(Maximum Likelihood Estimation) using a quadratic approximation are performed for the at-site low flow frequency analysis.