• Title/Summary/Keyword: Bayes

Search Result 931, Processing Time 0.025 seconds

The influence of a first-order antedependence model and hyperparameters in BayesCπ for genomic prediction

  • Li, Xiujin;Liu, Xiaohong;Chen, Yaosheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1863-1870
    • /
    • 2018
  • Objective: The Bayesian first-order antedependence models, which specified single nucleotide polymorphisms (SNP) effects as being spatially correlated in the conventional BayesA/B, had more accurate genomic prediction than their corresponding classical counterparts. Given advantages of $BayesC{\pi}$ over BayesA/B, we have developed hyper-$BayesC{\pi}$, ante-$BayesC{\pi}$, and ante-hyper-$BayesC{\pi}$ to evaluate influences of the antedependence model and hyperparameters for $v_g$ and $s_g^2$ on $BayesC{\pi}$.Methods: Three public data (two simulated data and one mouse data) were used to validate our proposed methods. Genomic prediction performance of proposed methods was compared to traditional $BayesC{\pi}$, ante-BayesA and ante-BayesB. Results: Through both simulation and real data analyses, we found that hyper-$BayesC{\pi}$, ante-$BayesC{\pi}$ and ante-hyper-$BayesC{\pi}$ were comparable with $BayesC{\pi}$, ante-BayesB, and ante-BayesA regarding the prediction accuracy and bias, except the situation in which ante-BayesB performed significantly worse when using a few SNPs and ${\pi}=0.95$. Conclusion: Hyper-$BayesC{\pi}$ is recommended because it avoids pre-estimated total genetic variance of a trait compared with $BayesC{\pi}$ and shortens computing time compared with ante-BayesB. Although the antedependence model in $BayesC{\pi}$ did not show the advantages in our study, larger real data with high density chip may be used to validate it again in the future.

Bayesian Hypothesis Testing for Two Lognormal Variances with the Bayes Factors

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1119-1128
    • /
    • 2005
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor and the fractional Bayes factor have been used to overcome this problem. In this paper, we suggest a Bayesian hypothesis testing based on the intrinsic Bayes factor and the fractional Bayes factor for the comparison of two lognormal variances. Using the proposed two Bayes factors, we demonstrate our results with some examples.

  • PDF

Fuzzy-Bayes Fault Isolator Design for BLDC Motor Fault Diagnosis

  • Suh, Suhk-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.354-361
    • /
    • 2004
  • To improve fault isolation performance of the Bayes isolator, this paper proposes the Fuzzy-Bayes isolator, which uses the Fuzzy-Bayes classifier as a fault isolator. The Fuzzy-Bayes classifier is composed of the Bayes classifier and weighting factor, which is determined by fuzzy inference logic. The Mahalanobis distance derivative is mapped to the weighting factor by fuzzy inference logic. The Fuzzy-Bayes fault isolator is designed for the BLDC motor fault diagnosis system. Fault isolation performance is evaluated by the experiments. The research results indicate that the Fuzzy-Bayes fault isolator improves fault isolation performance and that it can reduce the transition region chattering that is occurred when the fault is injected. In the experiment, chattering is reduced by about half that of the Bayes classifier's.

A Comparative Study for Several Bayesian Estimators Under Balanced Loss Function

  • Kim, Yeong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.291-300
    • /
    • 2006
  • In this research, the performance of widely used Bayesian estimators such as Bayes estimator, empirical Bayes estimator, constrained Bayes estimator and constrained empirical Bayes estimator are compared by means of a measurement under balanced loss function for the typical normal-normal situation. The proposed measurement is a weighted sum of the precisions of first and second moments. As a result, one can gets the criterion according to the size of prior variance against the population variance.

  • PDF

On the Performance of Empiricla Bayes Simultaneous Interval Estimates for All Pairwise Comparisons

  • Kim, Woo-Chul;Han, Kyung-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.161-181
    • /
    • 1995
  • The goal of this article is to study the performances of various empirical Bayes simultaneous interval estimates for all pairwise comparisons. The considered empirical Bayes interval estimaters are those based on unbiased estimate, a hierarchical Bayes estimate and a constrained hierarchical Bayes estimate. Simulation results for small sample cases are given and an illustrative example is also provided.

  • PDF

Default Bayes Factors for Testing the Equality of Poisson Population Means

  • Son, Young Sook;Kim, Seong W.
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.549-562
    • /
    • 2000
  • Default Bayes factors are computed to test the equality of one Poisson population mean and the equality of two independent Possion population means. As default priors are assumed Jeffreys priors, noninformative improper priors, and default Bayes factors such as three intrinsic Bayes factors of Berger and Pericchi(1996, 1998), the arithmetic, the median, and the geometric intrinsic Bayes factor, and the factional Bayes factor of O'Hagan(1995) are computed. The testing results by each default Bayes factor are compared with those by the classical method in the simulation study.

  • PDF

Robust Bayes and Empirical Bayes Analysis in Finite Population Sampling with Auxiliary Information

  • Kim, Dal-Ho
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.3
    • /
    • pp.331-348
    • /
    • 1998
  • In this paper, we have proposed some robust Bayes estimators using ML-II priors as well as certain empirical Bayes estimators in estimating the finite population mean in the presence of auxiliary information. These estimators are compared with the classical ratio estimator and a subjective Bayes estimator utilizing the auxiliary information in terms of "posterior robustness" and "procedure robustness" Also, we have addressed the issue of choice of sampling design from a robust Bayesian viewpoint.

  • PDF

A Comparative Study for Several Bayesian Estimators Under Squared Error Loss Function

  • Kim, Yeong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.371-382
    • /
    • 2005
  • The paper compares the performance of some widely used Bayesian estimators such as Bayes estimator, empirical Bayes estimator, constrained Bayes estimator and constrained Bayes estimator by means of a new measurement under squared error loss function for the typical normal-normal situation. The proposed measurement is a weighted sum of the precisions of first and second moments. As a result, one can gets the criterion according to the size of prior variance against the population variance.

  • PDF

Bayes Estimation of Two Ordered Exponential Means

  • Hong, Yeon-Woong;Kwon, Yong-Mann
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.273-284
    • /
    • 2004
  • Bayes estimation of parameters is considered for two independent exponential distributions with ordered means. Order restricted Bayes estimators for means are obtained with respect to inverted gamma, noninformative prior and uniform prior distributions, and their asymptotic properties are established. It is shown that the maximum likelihood estimator, restricted maximum likelihood estimator, unrestricted Bayes estimator, and restricted Bayes estimator of the mean are all consistent and have the same limiting distribution. These estimators are compared with the corresponding unrestricted Bayes estimators by Monte Carlo simulation.

  • PDF

Bayes Risk Comparison for Non-Life Insurance Risk Estimation (손해보험 위험도 추정에 대한 베이즈 위험 비교 연구)

  • Kim, Myung Joon;Woo, Ho Young;Kim, Yeong-Hwa
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1017-1028
    • /
    • 2014
  • Well-known Bayes and empirical Bayes estimators have a disadvantage in respecting to overshink the parameter estimator error; therefore, a constrained Bayes estimator is suggested by matching the first two moments. Also traditional loss function such as mean square error loss function only considers the precision of estimation and to consider both precision and goodness of fit, balanced loss function is suggested. With these reasons, constrained Bayes estimators under balanced loss function is recommended for non-life insurance pricing.; however, most studies focus on the performance of estimation since Bayes risk of newly suggested estimators such as constrained Bayes and constrained empirical Bayes estimators under specific loss function is difficult to derive. This study compares the Bayes risk of several Bayes estimators under two different loss functions for estimating the risk in the auto insurance business and indicates the effectiveness of the newly suggested Bayes estimators with regards to Bayes risk perspective through auto insurance real data analysis.