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Default Bayes Factors for Testing the Equality of
Poisson Population Means

Young Sook Sonl), Seong W. Kim?2

Abstract

Default Bayes factors are computed to test the equality of one Poisson population
mean and the equality of two independent Possion population means. As default priors
are assumed Jeffreys priors, noninformative improper priors, and default Bayes factors
such as three intrinsic Bayes factors of Berger and Pericchi(1996, 1998), the
arithmetic, the median, and the geometric intrinsic Bayes factor, and the fractional
Bayes factor of O’Hagan(1995) are computed. The testing results by each default
Bayes factor are compared with those by the classical method in the simulation study.

Keywords : Noninformative improper prior, Default Bayes factors, Testing on the equality of
independent Poisson population means

1. Introduction

In quality control the Poisson( ) distribution

flm = 42— | x=012, -

is typically used as a probability model of the number of defects or nonconformaties occurred
per unit of a product, where u is a positive parameter called the mean occurrence rate of

defects.
A test on the equality of one Poisson population mean is to test the hypothesis

Hy:pu = pu, versus H,: pu=+yy, 1.

where u, is a fixed positive constant. Let X, X,, ... , X, be a random sample from a
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Poisson( g) distribution to test the hypothesis (1.1). Then Y = 21X,- is a sufficient

statistic for g with Poisson( ng). The classical method to test H, versus H; has two
decision rules according to the size of g, When g, <5, the test rule with the significance

level « is to

reject Hg if xzzof(xlnpo)s—g or xzyf(xlnpo)s—g.

The p-value of the computed value of test statistic is 2 - Zof (x |mpey) if
“=

20f(x|n/z o) <0.5 and 2+ 2 f(xlmu,) otherwise. When g, =5, the test rule by normal
x= x=y

approximation is to

Y—np,

reject  H if 'ZOI:‘W
0

< Z a2

where 2z, is the upper @/2 percentage point of the standard normal distribution. The p-value
of z,, the computed value of Z, is 2[1—®@(|z()], where ®( -) is the standard normal

cumulative distribution function.
A test on the equality of two Poisson population means is to test the hypothesis

Hy: py=pu,=p versus Hy: pF p,y, (1.2)

where g ; is a mean parameter of the Poisson population ¢ and g is an unknown common
mean parameter. To test the hypothesis (1.2) a random sample { X ;} , j=1,2, ... ,n;, is

sampled from each Poisson (x;), 7=1,2 , and the chi-square test statistic

3 ( ]SIX,,-—TO ’

=1
X b

2
X0 =

where X = (1/2) ﬁl 21 X ; , is used. The test rule with the significance level « is to
=1 7=

reject Hy if x32) X%,a,

where yx %_a is the upper «a percentage point of the chi-square distribution with 1 degree of

freedom. The p-value of x(z) is 1—-F 1( X 8) where F,(+) is the chi-square cumulative
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distribution function with 1 degrees of freedom.

By now, we review the classical approach to test the equality of Poisson population means.
In this paper we are interested in Bayesian solution on the same subject. We wish to test the
equality of Poisson population means with only the least prior information, i.e. noninformative
improper prior for the parameters. So we use as Bayesian test tools the default Bayes factors
such as the intrinsic Bayes factor of Berger and Pericchi(1996, 1998) and the fractional Bayes
factor of O’Hagan(1995).

In section 2, default Bayes factors are introduced. In section 3 and section 4 they are
computed to test the equality of one Poisson population mean and the equality of two Poisson
population means, respectively. In the last section, the results of the classical test summarized
in section 1 and Bayesian test obtained in section 3 and section 4 are applied to simulated
data.

2. Default Bayes Factors

Suppose that we wish to test the following hypothesis

H(): X={X1,X2,...,X,,}"’f(X|(90), 606 @0,
Hl: X={X1,X2,...,Xn}Nf(xlé’l), 015 @1.

There are the Bayes Factor and the posterior probability of hypothesis or model as tools for
Bayesian testing or Bayesian model selection.

The Bayes factor By, to test the hypothesis Hy versus H, is defined by B ( x |1),

where

m (x| b)

Bm(xlb)z mo(xlb) ’

(2.1)

and

m (x| b) =f@7r,-( 6,)1°(0 x)db,

with a likelihood function /(8 x) =T [_,f (x;|l §;), a fraction b, b<0<1, of likelihood
function and a prior distribution x(8, of parameter §; under the hypothesis H; ,
(i=0,1). Here m,;(x|1), 1=0,1, is called a marginal or a predictive density of the
hypothesis H,, i = 0, 1.

Under the assumption of equal prior probability of each hypothesis being true the posterior

probability of H; being true is
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(2.2)

where By is a Bayes factor, By(x 1), defined in (2.1).

Bayesian decision rule for testing is to
reject Hy if Bp(x|1)>1 or P(H,| x)>0.5.

There are a group of Bayesians who use default priors, most of which are typically
improper. Noninformative improper priors are objective priors that need not any subjective
consideration. But there is an inevitable obstacle in computing the Bayes factor using the

noninformative improper prior 7 Y (8,) since 7 Y(8;) is defined only up to arbitrary

constant ¢; . Hence

mﬁxu>=_gﬂﬂmnxmu»wl
mg,(xll) f@71'6\7(6'0)10((9“x)a’@oy

B (xl)= (2.3)

is defined only up to arbitrary constant c¢,/c .

The intrinsic Bayes factor (IBF) of Berger and Pericchi(1996) and the fractional Bayes
factor (FBF) of O'Hagan(1995) are objective and automatic priors. The idea of intrinsic Bayes

factor is to use the minimal training sample x(/), the part of full sample, to convert the
improper prior 7 ¥ (@) to the proper posterior density. A training sample, x(/), is called a
minimal training sample if it has the minimal sample size to guarantee 0<m Y( x|1) < oo for

all H, The result is

By (1) =B (xI1) - By(x()I1),
where

m Y x(1)]1)
m 1 x()1)’

Bi(x(DHI1)= (2.4)

and
m Y x(DID = [256) 1,06, x(1))db, .

Clearly, c¢,/cy, in B1i(x|l1) and c¢;/cy in BH(x(l)|1) are cancelled by the
multiplication.

Now the intrinsic Bayes factor By is defined by
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Biy=E,J0 By(D]=BN(x11)- E,[ BHi(x(DI)].
But there is practically a difficulty in obtaining the expectation of B ( x(7)|1) over I .

Hence instead of its expectation can be used a sample mean, a sample median, or a sample

geometric mean. Thus an arithmetic IBF(AIBF), B flol, a median IBF(MIBF), B %I, and a
geometric IBF(GIBF), B %], of Berger and Pericchi (1996, 1998) are defined as follows

Bii=BY( 1D+ T BN=(DI, @25
BY/=BH(xI1)- M (BlCx(DID), (26)
Bff=B(x11) - (5B 2D} @)

where N implies the use of noninformative improper prior, x(/) is the /— t4 minimal training
sample, and L is the frequency of minimal training sample possible in the sample.
Finally the FBF of O’Hagan (1995) is defined by

Bl =BY¥(xI1)- BY(x|b),

where the fraction b of likelihood is usually used as & = m/#n with the size m of a minimal
training sample. Similarily in B {j, ¢,;/cy in BY(xl1) and ¢y/c, in BN(x|b) are

cancelled by the multiplication

3. Default Bayes Factors for Testing the Equality of
One Poisson population Mean.

Consider the following hypothesis on the equality of one Poisson population mean,

Hy: p=py versus Hy: p+u,

The prior 7o(x#) = 14,(x) for Hy and Jeffreys prior, the noninformative improper prior,
()= p 1?2 14,(x) for H, are assumed, where 1(-) is an indicator function,

Ao={ulu= 1y, 1, is a fixed positive number } , an A ={ple+ xy, >0}

We compute the following functions,
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bglx; — bnpu,
N, b Mo

b) = / = 3.0

mo(xlb)= mo(rg) ! (ol x) (17,’-’=1x,-!)b

and
mCxle) = [ 7)) 2)du
F(b21x1+05)
- (bzlx,-:O_.S) . b (3.2)
(bn) " (H,':].?Cj!)

The size of a minimal training sample is 1 of being equal to a minimum sample size
required to guarantee a finite marginal density. Replacing x by x;, # by 1,6 by 1, and x;

by x; in (3.1) and (3.2), the marginal density of a minimal training sample under each

hypothesis is obtained by for /[=1,2, ... ,»n,

myCxll)= (o e ™) x, !, (3.3)
and

m Y x11)=IC x,+0.5)/ x,! . (3.4)

Finally, after (2.1), (2.3)-(2.7) are filled with (3.1)-(3.4) the AIBF, B i, the MIBF B ¥ the

GIBF, B %I, and the FBF, B f;) are respectively obtained by

Bi=Y(12lD- L+ 2 vaan 35)
Medi -
By=Y1,nl1)- 292" {Y (LI}, (36)
BE=Y(,nll) - (T}, YLD}, (3.7)
and

BE= YO n|1)/Y(1 nl—l—) (3.8)
10 ’ , n , .

where

e Mot F{b Zcxj+ 0.5}

2x,»+0.5 bg(xf ’
0

Y(c,dlb) = ;
{b(d—c+1)} ™ u
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4. Default Bayes Factors for Testing the Equality of
Two Poisson population Means

Consider the following hypothesis on the equality of two Poisson population means
Hy pi= po=pn versus Hy: pi# py.

Jeffreys prior mo(y) for H, and Jeffreys prior m; (g, ¢ ,) for H, are assumed as

follows,

mo()=p Y% 14, (1), where A,={u|u>0},

12

ey, o) =p 0P U (i), where A v={(py, 1ol g, sy, 155 0).

We compute the following functions,

[=e]

m@’(xl,leb)=fo o 1 ulxy, x0)du

r{s( I fglxz,-)+o.5}

= o 3 4.1
n, b ", b b‘] , Xt ;lxz,-}+0.5
(szlxljl) (H/:lx'gj!) {b( n+ nz)}
and
i r(b 2 x40.5) (6 3 xy40.5)
m 1( X, x2|b): : ]bi:x oS bix~+0,5 . (42)
(I 2y D) (T2 ) (b)) ™ (bny) ™

The size of a minimal training sample is 2. Each of two is from each population. Replacing
x by xy(k[), my by 1, ny by 1, x;; by x4, and x5 by x4 in (41) and (42) the
marginal density of a minimal training sample under each hypothesis is given by for
k=1,2,...,n; andI=1,2, ... ,n,

I'( x .+ x9,40.5)
ST R (43)

m §( xy(k, D)1)= —
X1k: X9/ 2

and



556  Young Sook Son, Seong W. Kim

F( x1k+05)F( XQ1+05)

S (4.4)
X1k X9i-

m (xy(k, D) =

Finally, after (2.1), (2.3)-(2.7) are filled with (4.1)-(4.4) the AIBF, B {y/, the MIBF, B {{ the

GIBF, B %’, and the FBF, B {E, are respectively obtained by

Al _ _ 1 S
B =21, n, 1500 = Zjl glz (b kLI (45)
BU =21, 1,11 - (M8 (27 (kb 111D, (46)
1<i< 7o
- n, _ 1/ (ny-ny
BY=2Z(1,n,, 1, nylD{ 1T 2N I 2 Z7 (R b, 1,11 1)} : 4.7)
and
Bﬁ)=Z(1,n1,1,n2|1)/z(1,n1,1,n2|——nlinz), (4.8)
where

b( Zcx”+ 2/‘52/ +0.5
b;xzﬁo.s

(d—ct+f—e+2)
—2L b 20 x Tt
b?(d—c+1)

r(b 3 xut05) (b 2 5t 0.5)
e TR TAET

Z(c,d, e, f|b) = o
“(f—e+1)

5. A Simulation Study

To see the performance of tests by default Bayes factors in testing the equality of Poisson
population means Poisson data of size 30 with 100 replications are simulated from Poisson( @)

distributions.
Results of tests on the equality of one Poisson population mean are shown in Table 5.1
and Table 52 and those on the equality of two independent Poisson population means in

Table 5.3 and Table 5.4.



Default Bayes Factors for Testing the Equality of Poisson Population Means 557

Mean values of B, and P(H;|x)=1.0— P(Hy| x) under the assumption of equal prior
probability for each hypothesis and powers by By in 100 replications are larger as Poisson

data are farther from the population of Hj. These results meet our theoretical expectations.
Also results in cells shadowed of Tables explain that the data are sampled from the
population of H,. Powers by B, when Hj is true are about 2% ~7%, which are compared

with powers, 1%, 5%, and 10%, by the classical tests.
Though the differences in powers are small among four default Bayes factors, generally the
GIBF's give smaller powers and the FBF’'s give larger powers.

The conflicts between the p-value, the observed significance level, and P(H;| x), the

posterior probability of Hj, are also shown in our results as Berger and Sellke(1987).

6. Concluding Remarks

In a simulation study we can see that default Bayes factors under the least prior
information perform coincidently with the logic of test.

In addition to experiments with the sample size #=30 and (#,, ny) = (30,30), experiments
were carried for simulated data with the small sample size #=8,15 in case of one sample
and (7n,n,)=1(8,8), (15,15) in case of two samples, though their tables are not presented
here because of limited space. We can see that their results for small samples are similar to
those of the sample size n=30 and (#,,n,)=(30,30) and they more agree with our

theoretical expectation for testing as the sample sizes are larger.
It seems to be complicated to extend to the test on the equality of k independent Poisson

population means since the likelihood function of H): g u; for some 1,7 (,j=1,2,...,k)

must be written for any 4.
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Table 5.1

Default Bayes Factors for Testing the Equality of Poisson Population Means

Testing results of

Hy: p=1.0 versus

size #=30 simulated from Poisson( ) distribution.

y7, AIBF MIBF GIBF FBF p-value
Mean of B 0.160D+11 | 0.160D+11 | 0.160D+11 | 0.161D+11 0.000
(s.d. of By) (0.101D+12) | (0.101D+12) | (0.101D+12) | (0.101D+12) (0.000)
0.1 | Mean of P(Hy x) 0.000 0.000 0.000 0.000
(s.d. of P(Hyl %)) | (0.000) (0.000) (0.000) (0.000)
power by By 1.000 1.000 1.000 1.000
Mean of B, 0.722D+10 | 0.721D+10 | 0.722D+10 | 0.722D+10 0.000
(s.d. of By) (0.718D+11) | (0.718D+11) | (0.718D+11) | (0.718D+11) (0.000)
0.2 | Mean of P(Hyx) 0.000 0.000 0.000 0.000
(s.d. of P(Hy x)) | (0.001) (0.001) {0.001) (0.001)
power by By 1.000 1.000 1.000 1.000
Mean of B 0.264D+03 | 0.212D+03 | 0.252D+03 | 0.327D+03 0.032
(s.d. of By) (0.114D+04) | (0.908D+03) | (0.109D+04) | (0.134D+04) (0.100)
05 | Mean of P(H)x) | 0.161 0.184 0.167 0.136
(s.d. of P(Hy x)) | (0.229) (0.243) (0.235) (0.204)
power by By 0.850 0.850 0.850 0.900
Mean of By 0.183D+02 | 0.145D+02 | 0.174D+02 | 0.234D+02 0.178
(s.d. of By) (0.105D+03) | (0.825D+02) | (0.997D+02) | (0.130D+03) (0.241)
0.7 | Mean of P(Hy x) 0.494 0525 0.505 0.440
(s.d. of P(Hy %)) | (0.285) (0.282) (0.288) (0.273)
power by By 0.450 0.420 0.450 0.560
Mean of By 0.297D+00 | 0.277D+00 | 0.268D+00 | 0.415D+00 0.512
(s.d. of By) (0.420D+00) | (0.380D+00) | (0.376D+00) | (0.537D+00) |  (0.294)
1.0 | Mean of P(Hjlx) | 0805 0.814 0.819 0.749
(s.d. of P(Hyl %)) | (0.119) (0.117) (0.115) (0.127)
power by By 0.030 0.030 0.030 0.050
Mean of B 0.296D+03 | 0.312D+03 | 0.206D+03 | 0.353D+03 0.072
(s.d. of By) (0.121D+04) | (0.128D+04) | (0.818D+03) | (0.142D+04) |  (0.121)
15 | Mean of P(Hyx) | 0.360 0.364 0.384 0.311
(s.d. of P(Hy x)) | (0.286) (0.290) (0.294) (0.261)
power hy By 0.640 0.650 0.590 0.760
Mean of B 0.140D+09 | 0.151D+09 | 0.760D+08 | 0.121D+09 0.002
(s.d. of By) (0.119D+10) | (0.125D+10) | (0.634D+09) | (0.103D+10) (0.007)
20 | Mean of P(Hyx) | 0028 0.029 0.032 0.022
(s.d. of P(H) %)) | (0.087) (0.090) (0.096) 0.071)
power by By 1.000 1.000 1.000 1.000
Mean of B 0.849D+27 | 0.231D+27 | 0.184D+27 | 0.287D+27 0.000
(sd. of By) (0.844D+28) | (0.227D+28) | (0.183D+28) | (0.286D+28) (0.000)
3.0 | Mean of P(Hyl x) 0.000 0.000 0.000 0.000 ’
(s.d. of P(Hy %)) | (0.000) (0.000) (0.000) (0.000)
power by By 1.000 1.000 1.000 1.000

559

Hy:p=*1.0 for Poisson data of
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Table 5.2 Testing results of Hy:p=10.0 versus H;:p¢+10.0 for Poisson data
size n =30 simulated from Poisson( #) distribution.
)7 AIBF MIBF GIBF FBF p-value
Mean of By 0.549D+11 0.526D+11 0.357D+11 0.488D+11 0.000
(s.d. of Byy) (0.467D+12) | (0.455D+12) | (0.301D+12) | (0.406D+12) (0.000)
7.0 | Mean of P(Hylx) | 0.001 0.001 0.001 0.001
(s.d. of P(Hyl %)) | (0.003) (0.003) (0.004) (0.003)
power by By 1.000 1.000 1.000 1.000
Mean of By 0.846D+06 | 0.640D+06 | 0.498D+06 0.823D+06 0.011
(s.d. of By) (0.821D+07) | (0.618D+07) | (0.482D+07) | (0.793D+07) (0.034)
80 | Mean of P(Hylx) | 0.09 0.090 0.106 0.080
(sd. of P(Hy %)) | (0.189) (0.181) (0.203) (0.164)
power by By 0.930 0.940 0.910 0.950
Mean of By 0.115D+03 0.147D+03 0.896D+03 0.127D+03 0.178
(s.d. of By) (0.108D+04) | (0.140D+04) | (0.840D+04) | (0.119D+04) (0.228)
9.0 | Mean of P(Hylx) | 0542 0.522 0.570 0.488
(s.d. of P(H|l x)) | (0.272) (0.270) (0.273) (0.263)
power by By 0.400 0.420 0.390 0.480
Mean of By 0.529D+00 | 0.590D+00 | 0.463D+00 | 0.666D+00 0.470
(s.d. of By) (0.262D+01) | (0.293D+01) | (0.238D+01) | (0.300D+01) (0.279)
10.0 | Mean of P(Hylx) | 0.805 0.790 0.826 0.754
(s.d. of P(Hyl x)) | (0.132) (0.136) 0.127) (0.136)
power by By 0.030 0.050 0.020 0.060
Mean of B 0.833D+01 0.922D+01 0.625D+01 0.103D+02 0.193
(sd. of By (0.352D+02) | (0.386D+02) | (0.248D+02) | (0.431D+02) (0.224)
110 | Mean of P(Hylx) | 0583 0.566 0.611 0.531
(sd. of P(H %)) | (0.278) 0.277) (0.277) (0.269)
power by By 0.310 0.330 0.260 0.360
Mean of By 0.331D+04 0.359D+04 0.238D+04 0.357D+04 0.019
(sd. of By) (0.136D+05) | (0.145D+05) | (0.950D+04) | (0.143D+05) (0.050)
12.0 | Mean of P(Hylx) | 0.146 0.139 0.161 0.125
(sd. of P(H x)) | (0.234) 0.227) (0.245) (0.210)
power by By 0.870 0.870 0.860 0.890
Mean of By 0.144D+10 | 0.136D+10 | 0.793D+09 | 0.123D+10 0.001
(s.d. of By (0.107D+11) | (0.107D+11) | (0.585D+10) | (0.909D+10) (0.009)
13.0 | Mean of P(Hyjx) | 0.012 0.011 0.014 0.010
(sd. of P(Hyl x)) | (0.069) (0.065) (0.075) (0.061)
power by By 0.990 0.990 0.990 0.990
Mean of By, 0.394D+16 | 0.267D+16 | 0.190D+16 0.283D+16 0.000
(s.d. of By) (0.375D+17) | (0.250D+17) | (0.182D+17) | (0.270D+17) (0.000)
14.0 | Mean of P(Hylx) | 0.000 0.000 0.000 0.000
(s.d. of P(Hyl %)) | (0.001) (0.001) (0.001) (0.001)
power by By 1.000 1.000 1.000 1.000

of
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Table 5.3 Testing results of Hy:py = ppy=p versus Hi:py#+ ps for two independent
Poisson data of size #n; =mn, =30 simulated from Poisson(1.0) and  Poisson( )
distribution.

u AIBF MIBF GIBF FBF p-value

Mean of B 0.480D+10 0.326D+10 0.359D+10 0.381D+10 0.000

(s.d. of By) (0.385D+11) | (0.240D+11) | (0.285D+11) | (0.306D+11) (0.000)
0.1 Mean of P(Hy| x) 0.002 0.002 0.002 0.002
(s.d. of P(Hyl x)) | (0.006) (0.008) (0.007) (0.006)
power by By 1.000 1.000 1.000 1.000

Mean of By 0.431D+06 0.409D+06 0.353D+06 0.389D+06 0.009

(sd. of By) (0.230D+07) | (0.223D+07) | (0.186D+07) | (0.205D+07) (0.083)
0.2 | Mean of P(Hyl x) 0.027 0.030 0.029 0.025
(s.d. of P(Hylx)) | (0.093) (0.092) (0.095) (0.091)
power by B 0.990 0.990 0.990 0.990

Mean of B 0.234D+07 0.234D+07 0.168D+07 0.193D+07 0.111

(sd. of By) (0.234D+08) | (0.234D+08) | (0.168D+08) | (0.193D+08) (0.194)
05 | Mean of P(H| x) 0.398 0.426 0.419 0.368
(s.d. of P(Hyl x)) | (0.279) (0.288) (0.284) (0.267)
power by By, 0.600 0.570 0.570 0.630

Mean of By, 0.619D+01 0.560D+01 0.515D+01 0.699D+01 0.276

(s.d. of By) (0.313D+02) | (0.284D+02) | (0.254D+02) | (0.345D+02) (0.279)
0.7 | Mean of P(H,| x) 0.631 0.655 0.654 0.592
(s.d. of P(Hylx)) | (0.246) (0.246) (0.245) (0.241)
power by By, 0.230 0.210 0.210 0.270

Mean of By 0.576D+00 0.516D+00 0.496D+00 0.708D+00 0.505

(sd. of By) (0.212D+01) | (0.189D+01) | (0.181D+01) | (0.248D+01) (0.292)
1.0 [ Mean of P(Hgyl x) 0.787 0.802 0.806 0.755
(sd. of P(Hylx)) | (0.146) (0.144) (0.142) (0.149)
power by By 0.050 0.050 0.040 0.060

Mean of By 0.296D+02 0.273D+02 0.216D+02 0.315D+02 0.200

(s.d. of By) (0.138D+03) | (0.140D+03) | (0.109D+03) | (0.157D+03) (0.276)
15 || Mean of P(Hy| x) 0518 0.519 0.542 0.472
(s.d. of P(Hylx)) | (0.298) (0.298) (0.300) (0.287)
power by By, 0.420 0.420 0.410 0.470

Mean of By 0.101D+06 0.750D+05 0.733D+05 0.111D+06 0.023

(sd. of By) (0.854D+06) | (0.588D+06) | (0.620D+06) | (0.941D+06) (0.070)
2.0 | Mean of P(H;l x) 0.167 0.165 0.183 0.142
(s.d. of P(Hyl x)) | (0.222) (0.221) (0.235) (0.197)
power by By, 0.900 0.900 0.860 0.920

Mean of B, 0.935D+09 0.787D+09 0.561D+09 0.887D+09 0.000

(sd. of By) (0.499D+10) | (0.431D+10) | (0.293D+10) | (0.474D+10) (0.000)
30 | Mean of P(H,l x) 0.001 0.001 0.001 0.001
(s.d. of P(Hylx)) | (0.006) (0.006) (0.007) (0.005)
power by By, 1.000 1.000 1.000 1.000
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Table 54 : Testing results of Hy: | = g = p versus H;: p; # yo for two independent

Poisson data of size

n=mny =30

simulated from Poisson(5.0)

and Poisson( ¢)

distribution.
)7 AIBF MIBF GIBF FBF p-value
Mean of By 0.186D+14 | 0.126D+14 | 0.963D+14 | 0.153D+14 0.000
(s.d. of By) (0.113D+15) | (0.753D+15) | (0.588D+15) | 0.924D+15 (0.000)
20 | Mean of P(Hylx) | 0.000 0.000 0.000 0.000
(s.d. of P(Hy|x)) | (0.00D) (0.001) (0.002) 0.001
power by By, 1.000 1.000 1.000 1.000
Mean of By 0.147D+10 | 0.118D+10 | 0.762D+09 | 0.131D+10 0.007
(s.d. of By) (0.147D+11) | (0.118D+11) | (0.762D+10) | (0.131D+11) |  (0.029)
30 | Mean of P(Hylx) | 0073 0.068 0.083 0.061
(s.d. of P(Hylx)) | (0.154) (0.147) (0.168) (0.134)
power by By, 0.960 0.970 0.960 0.980
Mean of B, 0.318D+02 | 0.357D+02 | 0.225D+02 | 0.391D+02 0.162
(s.d. of By (0.198D+03) | (0.221D+03) | (0.138D+03) | (0.243D+03) |  (0.214)
40 | Mean of P(Hylx) | 0536 0515 0.569 0.478
(s.d. of P(Hylx)) | (0.274) (0.273) (0.272) (0.266)
power by By 0.400 0.440 0.370 0.500
Mean of By 0.288D+00 | 0.322D+00 | 0.241D+00 | 0.402D+00 0.505
(s.d. of By) (0.327D+00) | (0.366D+00) | (0.262D+00) | (0.455D+00) |  (0.300)
50 | Mean of P(Hylx) | 0807 0.790 0.829 0.754
(s.d. of P(Hyl %)) | (0.123) (0.128) (0.114) (0.134)
power by By 0.050 0.050 0.040 0.070
Mean of By 0.106D+02 | 0.119D+02 | 0.805D+01 | 0.136D+02 0212
(s.d. of By) (0.503D+02) | (0.555D+02) | (0.366D+02) | (0.653D+02) |  (0.267)
6.0 | Mean of P(Hyl x) 0.553 0.534 0.582 0.500
(s.d. of P(Hylx)) | (0.294) (0.292) (0.293) (0.285)
power by By, 0.380 0.410 0.360 0.440
Mean of B, 0.487D+05 | 0.456D+05 | 0.300D+05 | 0.561D+05 0.024
(s.d. of By) (0.368D+06) | (0.338D+06) | (0.231D+06) | (0.423D+06) |  (0.071)
70 | Mean of P(Holx) | 0174 0.163 0.193 0.147
(s.d. of P(Hylx)) | (0.229) (0.220) (0.244) (0.203)
power by By 0.890 0.910 0.870 0.920
Mean of By 0.155D+08 | 0.149D+08 | 0.888D+07 | 0.151D+08 0.001
(s.d. of By) (0.846D+08) | (0.810D+08) | (0.489D+08) | (0.819D+08) |  (0.007)
8.0 | Mean of P(Hy x) 0.021 0.019 0.024 0.017
(s.d. of P(Hylx)) | (0.072) (0.067) (0.078) (0.062)
power by By 0.990 0.990 0.990 0.990
Mean of By 0.246D+12 | 0.194D+12 | 0.121D+12 | 0.204D+12 0.000
(s.d. of By) (0.201D+13) | (0.156D+13) | (0.977D+12) | (0.164D+13) |  (0.000)
9.0 | Mean of P(H,| x) 0.000 0.000 0.000 0.000
(s.d. of P(Hyl x)) | (0.000) (0.000) (0.000) (0.000)
power by By, 1.000 1.000 1.000 1.000




