• 제목/요약/키워드: Base pressure

검색결과 1,039건 처리시간 0.032초

A Study on the Mechanical Properties of the Friction Welding with Solid Shaft of SM45C (SM45C 중실축의 마찰용접 기계적 특성에 관한 연구)

  • Koo, Keon Seop
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제21권6호
    • /
    • pp.932-937
    • /
    • 2012
  • In the presented study, SM45C carbon steel parts were joined by friction welding. The welding process was carried out under optimized conditions using statistical approach. The study of SM45C is conducted with various combinations of process parameters. Parameter optimization, microstructure and mechanical property correlation are the major contribution of the study. The welded joints were produced by varying spindle revolution speed, friction pressure, upset pressure and burn-off length. Tension tests were applied to welded parts to obtain the strength of the joints. Fracturs properties were additionally obtained experimentally under fluctuated tensile loads. Microstructures using microphotographs were examined in the weld interface and weld region and heat affected zone and base metal and flash zone of welded parts. Finally, Hardness variations in welding zone and base metal were also obtained. Through these tests, the optimum conditions of parameters for ${\phi}20$ SM45C in friction welding were obtained when the friction spindle revolution was 1,950 rpm, the friction pressures was 30 MPs, upset pressures was 50 MPs.

Experimental consideration for contact angle and force acting on bubble under nucleate pool boiling

  • Ji-Hwan Park;Il Seouk Park;Daeseong Jo
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1269-1279
    • /
    • 2023
  • Pool boiling experiments are performed within an isolated bubble regime at inclination angles of 0° and 45°. When a bubble grows and departs from the heating surface, the pressure, buoyancy, and surface tension force play important roles. The curvature and base diameter are required to calculate the pressure force, the bubble volume is required to calculate the buoyancy force, and the contact angle and base diameter are required to calculate the surface tension force. The contact angle, base diameter, and volume of the bubbles are evaluated using images captured via a high-speed camera. The surface tension force equation proposed by Fritz is modified with the contact angles obtained in this study. When the bubble grows, the contact angle decreases slowly. However, when the bubble departs, the contact angle rapidly increases owing to necking. At an inclination angle of 0°, the contact angle is calculated as 82.88° at departure. Additionally, the advancing and receding contact angles are calculated as 70.25° and 82.28° at departure, respectively, at an inclination angle of 45°. The dynamic behaviors of bubble growth and departure are discussed with forces by pressure, buoyancy, and surface tension.

Finite element based total response analysis of rectangular liquid containers against different excitations

  • Kalyan Kumar Mandal
    • Ocean Systems Engineering
    • /
    • 제13권1호
    • /
    • pp.57-77
    • /
    • 2023
  • In the present study, the total hydrodynamic pressure exerted by the fluid on walls of rectangular tanks due to horizontal excitations of different frequencies, is investigated by pressure based finite element method. Fluid within the tanks is invisid, compressible and its motion is considered to be irrotational and it is simulated by two dimensional eight-node isoparametric. The walls of the tanks are assumed to be rigid. The total hydrodynamic pressure increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency. However, the hydrodynamic pressure has decreasing trend for the frequency greater than the fundamental frequency. Hydrodynamic pressure at the free surface is independent to the height of fluid. However, the pressure at base and mid height of vertical wall depends on height of fluid. At these two locations, the hydrodynamic pressure decreases with the increase of fluid depth. The depth of undisturbed fluid near the base increases with the increase of depth of fluid when it is excited with fundamental frequency of fluid. The sloshing of fluid with in the tank increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency of liquid. However, this vertical displacement is quite less when the exciting frequency is greater than the fundamental frequency.

Bearing Pressure and Design of Rectangular Steel Tubular Column Baseplate under Concentric Loadings (중심 압축력을 받는 각형강관기둥 베이스플레이트의 지압응력과 설계에 대한 연구)

  • Lee, Seung Joon;Kim, Jeong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • 제16권4호통권71호
    • /
    • pp.463-470
    • /
    • 2004
  • In this study, the bearing pressure distribution and design method of rectangular steel tubular column base plates under concentric loading were investigated. In general, the size and thickness of the baseplate are determined with the assumption that the bearing pressure of the column baseplate is uniformly distributed. When the column is loaded lightly, however, the size of the baseplate becomes smaller, the thickness becomes thinner and the bearing pressure of the baseplate is not distributed evenly. In this study, the distribution of the bearing pressure was investigated using the experimental and analytical methods. Four test specimens of the rectangular steel column baseplate were fabricated and tested. The analysis of the specimens was done using the finite element analysis program ANSYS. The result was that it was appropriate to use the effective width method to design the lightly loaded column baseplate, because the bearing pressure was not distributed evenly and was only concentrated under the column section.

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Base (저점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • 제20권8호
    • /
    • pp.193-203
    • /
    • 2004
  • Arching effects in backfill materials generate a nonlinear active earth pressure distribution on a rigid retaining wall with rough face, and arching effects on the shape of the nonlinear earth pressure distribution depends on the mode of wall movement. Therefore, the practical shape of failure surface and arching effect in the backfill changed with the mode of wall movement must be considered to calculate accurate magnitude and distribution of active earth pressure on the rigid wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the base is proposed by considering the shape of nonlinear failure surface and arching effects in the backfill. In order to avoid mathematical complexities in the calculation of active earth pressure, the imaginary failure surface composed of four linear surfaces is used instead of the nonlinear failure surface as failure surface of backfills. The comparisons between predictions from the proposed equations and existing model test results show that the proposed equations produce satisfactory predictions.

UV emission characterization of ZnO thin films depending on the variation of oxygen pressure (분위기 산소압변화에 따른 ZnO박막의 UV발광 특성분석)

  • Bae, Sang-Hyuck;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1523-1525
    • /
    • 1999
  • ZnO is a wide-bandgap II-VI semiconductor and has a variety of potential application. ZnO exhibits good piezoelectric, photoelectric and optic properties, and is good for a electroluminescence device. ZnO films have been deposited at (0001) shappire by PLD technique. Chamber was evacuated by turbomolecular pump to a base pressure of $1{\times}10^{-6}$ Torr Nd:YAG pulsed laser was operated at ${\lambda}=355nm$. The ZnO films were deposited at oxygen pressures from base to 500 mTorr. The substrate temperatures was increased from $200^{\circ}C$ to $700^{\circ}C$. At aleady works, UV emission and green-yellow PL was observed. In this work, ZnO films showed UV, violet, green and yellow emissions. UV emission was enhanced by increasing partial oxygen pressure. We investigated relationship between partial oxygen pressure and UV emission.

  • PDF

Seismic Design Guidelines for Welded Steel Oil Storge Tank (KS B 6225) (강제석유저장탱크(KS B 6225)의 내진설계기준 개선 안)

  • Park, Jong-Ryul;O, Taek-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제26권3호
    • /
    • pp.544-552
    • /
    • 2002
  • Recommended seismic design guide for the flat bottom vortical-cylindrical oil storage tanks in KS B 6225 is presented. Under earthquake excitations, the hydrodynamic pressure exerted on the tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea, zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described.

Seismic Design Guidelines for Welded Steel Oil Storge Tank (KS B 6225) (강제 석유 저장 탱크(KS B 6225)의 내진 설계 기준 개선 안)

  • Park, Jong-Ryul;Oh, Taek- Yul
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.166-173
    • /
    • 2001
  • Recommended seismic design guide for the flat bottom vertical-cylindrical oil storage tanks in KS B 6225 is presented. Under earthquake excitations, the hydrodynamic pressure exerted on the tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea, zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described.

  • PDF

Seismic Design Program for Oil Storage Tank (액체저장탱크의 내진설계 프로그램 개발)

  • 박종률;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.551-555
    • /
    • 1997
  • IJnder earthquake excitations, the hydrodynamic pressure exerted on the flat bottom vertical-cylindrical oil storage tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea. zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described. And seismic design program for the tanks is presented.

  • PDF

Analyses of Sever Plastic Deformation Behavior of Hot Isostatic Pressed Ni-base Superalloy during High Pressure Torsion Process (열간정수압성형공정으로 제조된 니켈기 초내열합금의 고압비틀림 공정을 통한 강소성 변형거동 분석)

  • Lee, D.J.;Lee, Y.;Kim, H.-K.;Kwon, Y.-N.;Kim, H.S.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • 제25권4호
    • /
    • pp.254-260
    • /
    • 2016
  • In this study, hot isostatic pressed Ni-base superalloy was subjected by high-pressure torsion process to improve the dispersion of gamma prime phase, mechanical properties and remove prior particle boundaries. The resulting microstructural size decreases and prior particle boundaries removed with increasing strain by high-pressure torsion process. Moreover, the microhardness values and room temperature tensile strength were enhanced. However, the tensile elongation was decreased as increasing strain due to fast crack propagation along the refined and well dispersed gamma prime particles.