• Title/Summary/Keyword: Base isolation device

Search Result 50, Processing Time 0.026 seconds

Floor Response Spectrum Analysis of a Base-isolated Nuclear Power Plant (면진원전의 층응답스펙트럼 해석)

  • Jung, Jae-Wook;Lee, Sangmin;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.355-362
    • /
    • 2016
  • In order to secure the stability against strong earthquakes, isolation devices on the existing nuclear power plant have been introduced. By applying the isolation device on structures, it is possible to isolate structures from the ground motion. Therefore, the natural frequencies of the structures become longer, and the responses of the structures due to the ground motion decrease. Especially, when designing the nuclear power plant, it is important to ensure the safety of internal devices as well as the nuclear power plant itself. The floor response spectrum is commonly used in designing the internal devices. In this research, floor response spectrum is evaluated and the effect of second hardening behavior is investigated by performing earthquake analysis.

Design of the Open-Loop Combined Meandered-Line 1-Layer Radiator for Diversity Antennas with Size-Reduction and Improved Isolation (다이버시티 안테나의 소형화와 격리도 향상을 위한 미앤더 선로와 개방형 루프가 결합된 방사구조의 설계)

  • Mok, Se-Gyoon;Kahng, Sung-Tek;Kim, Yong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.110-116
    • /
    • 2012
  • This paper proposes a new diversity antenna which is the base of MIMO, tunable and reconfigurable antennas. The antenna has a small size and high inter-antenna isolation resulting from the compact radiating element comprising a meandered line and an open-loop combined in one limited uniplanar space and a modified T-shaped decoupling structure, respectively. In a WiMAX band, the radiating element and the entire antenna are $0.092{\lambda}$ and $0.2216{\lambda}$ in size, which shows effective size-reduction and the gain and efficiency of the proposed antenna attached to the ground of a handheld device are 3.7dBi and 56% acceptable to the industrial standard.

Seismic Isolation Effects Due to the Difference Between the Center of Mass of the Building and the Center of Stiffness of Isolation Layer (건물의 질량중심과 면진층의 강성중심 차이에 따른 면진효과)

  • Hur, Moo-Won;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.107-115
    • /
    • 2014
  • In this study, we examined the seismic isolation effects due to the difference between the center of mass of the building and the center of stiffness of isolation layer. Because the base isolation technique is a technique that is highly dependent on the performance of seismic isolation devices installed on the seismic isolation layer, we have to examine the horizontal stiffness of seismic isolation devices after making them. If difference between the design stiffness and the actual stiffness of the seismic isolation device occurred, a big problem may be generated in the upper members on the seismic isolation layer. The analytical results show that the more eccentricity increases, the more maximum response acceleration, story shear and the member forces of the upper part of the structure increases, and the damage is expected to be in excess. Therefore, it is recommended that if possible, isolation devices have to be designed to coincide the center of mass of the building with the center of stiffness of isolation layer. If not after making isolation devices, they need to be relocated to prevent the eccentricity.

Dynamic Analysis for Base Isolated Structure with Shear Keys (쉬어키를 가진 면진건축물의 동적해석)

  • Han, Duck-Jeon;Kim, Tae-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.45-53
    • /
    • 2007
  • Recently, high-rise base isolated building structures with shear keys are often constructed in Japan which frequently occurs earthquakes. High-rise buildings are less damaged because those buildings have longer natural period than md or low rise buildings. The shear key is device that prevents the base isolators operating by the wind loads not by the earthquake loads. In case of big base shear force acts on the shear keys by earthquake, this device is broken and base isolator is operated. Therefore, seismic intensities play a role in acting on the shear keys. If wind loads are hither than the earthquake loads, the shear keys designed by wind loads are not operated in earthquakes. So, the requirements of shear keys in high-rise base isolated building structures must be examined in Korea with moderate seismic legions. In this study shear keys are applied with 5 and 15 stories base isolated building structures and investigated their dynamic responses to original and 1/2 scale downed El Centre NS(1940) ground motions. The results show that the yield shear forces of the shear keys affect significantly the dynamic behavior of base isolated building structures

  • PDF

A Study on the 80V BICMOS Device Fabrication Technology (80V BICMOS 소자의 공정개발에 관한 연구)

  • Park, Chi-Sun;Cha, Seung-Ik;Choi, Yearn-Ik;Jung, Won-Young;Park, Yong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.10
    • /
    • pp.821-829
    • /
    • 1991
  • In this paper, a BICMOS technology that has CMOS devices for digital application and bipolar devices for high voltage (80V) analog applications is presented. Basic concept to design BICMOS device is simple process technology without making too many performance trade-offs. The base line process is poly gate p-well CMOS process and three additional masking steps are added to improve bipolar characteristics. The key ingredients of bipolar integration are n+ buried layer process, up/down isolation process and p-well base process. The bipolar base region is formed simultaneously with the region of CMOS p-well area to reduce mask and heat cycle steps. As a result, hFE value of NPN bipolar transistor is 100-150(Ic=1mA). Collector resistance value is 138 ohm in case of bent type collector structure. Breakdown voltage of BVebo, BVcbo and BVceo are 21V, 115V and78V respectively. Threshold voltage is ${\pm}$1.0V for NMOS and PMOS transistor. Breakdown voltage of NMOS and PMOS transistor is obtained 22V and 19V respectively. 41 stage CMOS ring oscillator has 0.8ns delay time.

  • PDF

Shaking Table Tests of the 1/3 Scaled R/C Building with the Laminated Rubber Bearings (적층고무형 면진장치를 갖는 RC건물의 면진효과 검증 진동대 실험)

  • Kim Dong Young;Chun Young Soo;Whang Ki Tea;Chang Kug-Kwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.420-422
    • /
    • 2004
  • This paper reports the results of performance verification tests of the base isolated RC building with the laminated rubber bearings which is manufactured by Dongil Rubber Belt Co.. The shaking table tests were performed using a scaled 3-story model scaled to 1/3 of the prototype RC apartment building. Several major earthquake records were scaled to different peak ground accelerations and used as input base excitations. Through the verification tests, the validity of the applied base isolation device and the response reduction effect against earthquakes are confirmed.

  • PDF

Base Isolation of the 1/3 Scaled RC Building with the Laminated Rubber Bearings (적층고무형 면진 장치를 갖는 철근콘크리트 건물의 면진 특성)

  • Chang Kug-Kwan;Chun Young-Soo;Kim Dong-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.975-982
    • /
    • 2005
  • Scientific community agrees about the fact that base Isolation provides interesting solutions to minimize the seismic risk. Reliability of such a technique is nowadays proofed by a large number of applications like public buildings, nuclear plants, bridges, etc. This paper reports the results of performance verification tests of the base isolated RC building with the laminated rubber bearings which is manufactured by enterprise in Korea. The shaking table tests were performed using a three story model scaled to 1/3 of the prototype RC apartment building. Several major earthquake records were scaled to different peak ground accelerations and used as input base excitations. Especially in this study, effect of earthquake characteristics on response reduction and effect of the intensity of excitations are studied. Through the verification tests, the validity of the applied base isolaion device and the response reduction effect against earthquakes are confirmed.

Fuzzy Control of Smart Base Isolation System using Genetic Algorithm (유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.37-46
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed and investigated. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively, of the smart base isolation system. A fuzzy logic controller (FLC) is used to modulate the MR damper because the FLC has an inherent robustness and ability to handle non linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. This method is efficient in improving local portions of chromosomes. Neuro fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find optimal fuzzy rules and the GA optimized FLC outperforms not only a passive control strategy but also a human designed FLC and a conventional semi active control algorithm.

Characteristics of Lateral Structure Transistor (횡방향 구조 트랜지스터의 특성)

  • 이정환;서희돈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.977-982
    • /
    • 2000
  • Conventional transistors which have vertical structure show increased parasitic capacitance characteristics in accordance with the increase of non-active base area and collector area. These consequently have disadvantage for high speed switching performance. In this paper, a lateral structure transistor which has minimized parasitic capacitance by using SDB(Silicon Direct Bonding) wafer and oxide sidewall isolation utilizing silicon trench technology is presented. Its structural characteristics are designed by ATHENA(SUPREM4), the process simulator from SILVACO International, and its performance is proven by ATLAS, the device simulator from SILVACO International. The performance of the proposed lateral structure transistor is certified through the V$\_$CE/-I$\_$C/ characteristics curve, h$\_$FE/-I$\_$C/ characteristics, and GP-plot. Cutoff Frequency is 13.7㎓.

  • PDF

Design of Fuzzy Controller using Genetic Algorithm with a Local Improvement Mechanism (부분개선 유전자알고리즘을 이용한 퍼지제어기의 설계)

  • Kim, Hyun-Su;Paul N., Roschke;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.469-476
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively. A fuzzy logic controller (FLC) is used to modulate the MR damper. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. Neuro-fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find appropriate fuzzy rules and the GA-optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.

  • PDF