• Title/Summary/Keyword: Bandgap engineering

Search Result 325, Processing Time 0.031 seconds

Numerical Analysis of Transmission Characteristics on Photonic-Bandgap Structures in Millimeter Wave Band (밀리미터파 대역에서 유전체 PBG 구조의 투과 특성 해석)

  • 한진원;김기영;손종렬;태흥식
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.380-383
    • /
    • 2002
  • 본 논문에서는 20㎓~50㎓ 대역에서 2 차원 PBG(Photonic-Bandgap) 구조의 투과 특성을 RCWA(Rigorous coupled-wave analysis)방법에 의한 Transfer matrix로 해석하였다. Square lattice의 PBG 구조에 대하여 TE 편파에서 유전율의 변화와 결함(defect)의 유무에 대한 투과 특성을 고찰하였다.

  • PDF

Rhodomine B dye removal and inhibitory effect on B. subtilis and S. aureus by WOx nanoparticles

  • Ying, Yuet Lee;Pung, Swee Yong;Ong, Ming Thong;Pung, Yuh Fen
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.437-447
    • /
    • 2018
  • Visible-light-driven wide bandgap semiconductor photocatalysts were commonly developed via doping or coupling with another narrow bandgap metal oxide. However, these approaches required extra processing. The aim of study was to evaluate the photocatalytic performance of narrow bandgap $WO_x$ nanoparticles. A mixture of $WO_2$ and $WO_3$ nanoparticles were synthesized using solution precipitation technique. The photodegradation of RhB by these nanoparticles more effective in UV light than in visible light. In antibacterial susceptibility assay, $WO_x$ nanoparticles demonstrated good antibacterial against Gram-positive bacteria. The cell wall of bacterial was the main determinant in antibacterial effect other than $W^{4+}/W^{6+}$ ions and ROS.

Bandgap Voltage Reference Circuit Design Technology Suitable for Driving Large OLED Display Panel (대형 OLED 디스플레이 패널 구동에 적합한 밴드갭 레퍼런스 회로 설계 및 결과)

  • Moon, Jong Il;Cho, Sang Jun;Cho, Eou Sik;Nam, Chul;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.53-56
    • /
    • 2018
  • In this paper, a CMOS bandgap voltage reference that is not sensitive to changes in the external environment is presented. Large OLED display panels need high supply voltage. MOSFET devices with high voltage are sensitive to the output voltage due to the channel length modulation effect. The self-cascode circuit was applied to the bandgap reference circuit. Simulation results show that the maximum output voltage change of the basic circuit is 77mV when the supply voltage is changed from 10.5V to 13.5V, but the proposed circuit change is improved to 0.0422mV. The improved circuit has a low temperature coefficient of $9.1ppm/^{\circ}C$ when changing the temperature from $-40^{\circ}C$ to $140^{\circ}C$. Therefore, the proposed circuit can be used as a reference voltage source for circuits that require a high supply voltage.

Wideband Suppression of Radiated Emissions from a Power Bus in High-Speed Printed Circuit Boards

  • Shim, Yujeong;Kim, Myunghoi
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.184-190
    • /
    • 2016
  • We present experimental demonstrations of electromagnetic bandgap (EBG) structures for the wideband suppression of radiated emissions from a power bus in high-speed printed circuit boards (PCBs). In most of the PCB designs, a parallel plate waveguide (PPW) structure is employed for a power bus. This structure significantly produces the wideband-radiated emissions resulting from parallel plate modes. To suppress the parallel plate modes in the wideband frequency range, the power buses based on the electromagnetic bandgap structure with a defected ground structure (DGS) are presented. DGSs are applied to a metal plane that is connected to a rectangular EBG patch by using a via structure. The use of the DGS increases the characteristic impedance value of a unit cell, thereby substantially improving the suppression bandwidth of the radiated emissions. It is experimentally demonstrated that the DGS-EBG structure significantly mitigates the radiated emissions over the frequency range of 0.5 GHz to 2 GHz as compared to the PPW.

Bandgap Alteration of Transparent Zinc Oxide Thin Film with Mg Dopant

  • Salina, M.;Ahmad, R.;Suriani, A.B.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.64-68
    • /
    • 2012
  • We have successfully demonstrated a bandgap alteration of transparent zinc oxide (ZnO) thin film with Mg dopant by using sol-gel spin coating technique. By increasing the dopant from 0 to 30 atomic percent (at.%), a decrement value in the cutoff is observed, where the absorption edge shifts continuously to the shorter wavelength side, towards 300 nm. This resulted in a significant bandgap increment from 3.28 to 3.57 eV. However, the transmittance of the thin film at 350-800 nm gradually downgraded, from 93 to 80 % which is most probably due to the grain size that becomes bigger, and it also affected the electrical properties. The decrement from 45 to 0.05 mA at +10 V was observed in the I-V characteristics, concluding the significant relationship; where higher optical bandgap materials will exhibit lower conductivity. These findings may be useful in optoelectronics devices.

Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach

  • Chuan, M.W.;Wong, Y.B.;Hamzah, A.;Alias, N.E.;Sultan, S. Mohamed;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.213-221
    • /
    • 2022
  • Silicon carbide (SiC) is a binary carbon-silicon compound. In its two-dimensional form, monolayer SiC is composed of a monolayer carbon and silicon atoms constructed as a honeycomb lattice. SiC has recently been receiving increasing attention from researchers owing to its intriguing electronic properties. In this present work, SiC nanoribbons (SiCNRs) are modelled and simulated to obtain accurate electronic properties, which can further guide fabrication processes, through bandgap engineering. The primary objective of this work is to obtain the electronic properties of monolayer SiCNRs by applying numerical computation methods using nearest-neighbour tight-binding models. Hamiltonian operator discretization and approximation of plane wave are assumed for the models and simulation by applying the basis function. The computed electronic properties include the band structures and density of states of monolayer SiCNRs of varying width. Furthermore, the properties are compared with those of graphene nanoribbons. The bandgap of ASiCNR as a function of width are also benchmarked with published DFT-GW and DFT-GGA data. Our nearest neighbour tight-binding (NNTB) model predicted data closer to the calculations based on the standard DFT-GGA and underestimated the bandgap values projected from DFT-GW, which takes in account the exchange-correlation energy of many-body effects.

A Low Voltage Bandgap Current Reference with Low Dependence on Process, Power Supply, and Temperature

  • Cheon, Jimin
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.59-67
    • /
    • 2018
  • The minimum power supply voltage of a typical bandgap current reference (BGCR) is limited by operating temperature and input common mode range (ICMR) of a feedback amplifier. A new BGCR using a bandgap voltage generator (BGVG) is proposed to minimize the effect of temperature, supply voltage, and process variation. The BGVG is designed with proportional to absolute temperature (PTAT) characteristic, and a feedback amplifier is designed with weak-inversion transistors for low voltage operation. It is verified with a $0.18-{\mu}m$ CMOS process with five corners for MOS transistors and three corners for BJTs. The proposed circuit is superior to other reported current references under temperature variation from $-40^{\circ}C$ to $120^{\circ}C$ and power supply variation from 1.2 V to 1.8 V. The total power consumption is $126{\mu}W$ under the conditions that the power supply voltage is 1.2 V, the output current is $10{\mu}A$, and the operating temperature is $20^{\circ}C$.

Electromagnetic Interference Analysis of an Inhomogeneous Electromagnetic Bandgap Power Bus for High-Speed Circuits

  • Cho, Jonghyun;Kim, Myunghoi
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.237-243
    • /
    • 2017
  • This paper presents an analysis of the electromagnetic interference of a heterogeneous power bus where electromagnetic bandgap (EBG) cells are irregularly arranged. To mitigate electrical-noise coupling between high-speed circuits, the EBG structure is placed between parallel plate waveguide (PPW)-based power buses on which the noise source and victim circuits are mounted. We examine a noise suppression characteristic of the heterogeneous power bus in terms of scattering parameters. The characteristics of the dispersion and scattering parameters are compared in the sensitivity analysis of the EBG structure. Electric field distributions at significant frequencies are thoroughly examined using electromagnetic simulation based on a finite element method (FEM). The noise suppression characteristics of the heterogeneous power bus are demonstrated experimentally. The heterogeneous power bus achieves significant reduction of electrical-noise coupling compared to the homogeneous power buses that are adopted in conventional high-speed circuit design. In addition, the measurements show good agreement with the FEM simulation results.

적외선 검출기를 위한 액체 질소 온도 동작 밴드갭 기준회로의 설계

  • Kim, Youn-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.251-256
    • /
    • 2004
  • A stable reference voltage generator is necessary to the infrared image signal readout circuit(ROIC) to improve noise characteristics in comparison with signals originated from infrared devices, that is, to gain good images. In this study, bandgap reference circuit operating at cryogenic temperature of 77K for Infrared image ROIC(readout integrated circuit) was propose. Most of bandgap reference circuits which are presented so far operate at room temperature, and they are not suitable for infrared image ROIC operating at liquid nitrogen temperature, 77K. To design bandgap reference circuit operating at cryogenic temperature, the parameter characteristics of used devices as temperature change are seen, and then bandgap reference circuit is proposed with considering such characteristics. It demonstrates practical use possibility through taking measurements and estimations.

  • PDF