Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach |
Chuan, M.W.
(School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Wong, Y.B. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) Hamzah, A. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) Alias, N.E. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) Sultan, S. Mohamed (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) Lim, C.S. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) Tan, M.L.P. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) |
1 | Alaal, N., Loganathan, V., Medhekar, N. and Shukla, A. (2016), "First principles many-body calculations of electronic structure and optical properties of SiC nanoribbons", J. Phys., 49(10), 105306. https://doi.org/10.1088/0022-3727/49/10/105306. DOI |
2 | Chabi, S. and Kadel, K. (2020), "Two-dimensional silicon carbide: Emerging direct band gap semiconductor", Nanomaterials, 10(11), 2226. https://doi.org/10.3390/nano10112226. DOI |
3 | Chuan, M.W., Wong, K.L., Riyadi, M.A., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2021b), "Semi-analytical modelling and evaluation of uniformly doped silicene nanotransistors for digital logic gates", PloS One, 16(6), e0253289. https://doi.org/10.1371/journal.pone.0253289 DOI |
4 | Datta, S. (2005), Quantum transport: Atom to Transistor, Cambridge University Press, Cambridge, U.K. https://doi.org/10.1017/CBO9781139164313. DOI |
5 | Lin, X., Lin, S., Xu, Y., Hakro, A.A., Hasan, T., Zhang, B., Yu, B., Luo, J., Li, E. and Chen, H. (2013), "Ab initio study of electronic and optical behavior of two-dimensional silicon carbide", J. Mater. Chem C, 1(11), 2131-2135. https://doi.org/10.1039/C3TC00629H. DOI |
6 | Naqvi, S.R., Hussain, T., Luo, W. and Ahuja, R. (2018), "Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials", Nano Res. 11(7), 3802-3813. https://doi.org/10.1007/s12274-017-1954-z. DOI |
7 | Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306(5696), 666-669. https://doi.org/10.1126/science.1102896. DOI |
8 | Oxtoby, D.W., Gillis, H.P. and Butler, L.J. (2015), Principles of modern chemistry, Cengage Learning, Miami, U.S.A. |
9 | Hussain, T., Farokh Niaei, A.H., Searles, D.J. and Hankel, M. (2019), "Three-dimensional silicon carbide from siligraphene as a high capacity lithium ion battery anode material", J. Phys. Chem C, 123(45), 27295-27304. https://doi.org/10.1021/acs.jpcc.9b06151. DOI |
10 | Hefner, A., Ryu, S., Hull, B., Berning, D., Hood, C., Ortizrodriguez, J.M., Rivera-Lopez, A., Duong, T., Akuffo, A. and Hernandez-Mora, M. (2006). "Recent advances in high-voltage, high-frequency silicon-carbide power devices", Procededing of the Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Florida, U.S.A., October. https://doi.org/10.1109/IAS.2006.256542. DOI |
11 | Chuan, M., Wong, K., Hamzah, A., Rusli, S., Alias, N., Lim, C. and Tan, M. (2020), "Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties", Adv. Nano Res., 9(2), 105-112. https://doi.org/10.12989/anr.2020.9.2.105. DOI |
12 | Li, Y., Li, F., Zhou, Z. and Chen, Z. (2011), "SiC2 Silagraphene and its one-dimensional derivatives: Where planar tetra-coordinate silicon happens", J. Am. Chem. Soc., 133(4), 900-908. https://doi.org/10.1021/ja107711m. DOI |
13 | Fan, D., Lu, S., Guo, Y. and Hu, X. (2017), "Novel bonding patterns and optoelectronic properties of the two-dimensional SixCy monolayers", J. Mater. Chem. C, 5(14), 3561-3567. https://doi.org/10.1039/C6TC05415C. DOI |
14 | Sun, L., Li, Y., Li, Z., Li, Q., Zhou, Z., Chen, Z., Yang, J. and Hou, J. (2008), "Electronic structures of SiC nanoribbons", J. Chem. Phys., 129(17), 174114. https://doi.org/10.1063/1.3006431. DOI |
15 | Harris, G.L. (1995), Properties of Silicon Carbide, INSPEC, IET, London, U.K. https://doi.org/10.5772/615. DOI |
16 | Zhang, J.M., Zheng, F.L., Zhang, Y. and Ji, V. (2010), "First-principles study on electronic properties of SiC nanoribbon", J. Mater. Sci., 45(12), 3259-3265. https://doi.org/10.1007/s10853-010-4335-5. DOI |
17 | Zhang, W.H., Zhang, F.C., Zhang, W.B., Zhang, S.L. and Yang, W. (2017), "First-principle study of the structural, electronic, and optical properties of SiC nanowires", Chinese Phys. B., 26(5), 057103. https://doi.org/10.1007/s10853-010-4335-5. DOI |
18 | Shen, M., Krishnamurthy, S. and Mudholkar, M. (2011), "Design and performance of a high frequency silicon carbide inverter", Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Arizona, U.S.A., September. https://doi.org/10.1109/ECCE.2011.6064038. DOI |
19 | Bekaroglu, E., Topsakal, M., Cahangirov, S. and Ciraci, S. (2010), "First-principles study of defects and adatoms in silicon carbide honeycomb structures", Phys. Rev. B., 81(7), 075433. https://doi.org/10.1103/PhysRevB.81.075433. DOI |
20 | Chabi, S., Chang, H., Xia, Y. and Zhu, Y. (2016), "From graphene to silicon carbide: Ultrathin silicon carbide flakes", Nanotechnology, 27(7), 075602. https://doi.org/10.1088/0957-4484/27/7/075602. DOI |
21 | Xu, J., Gu, L., Ye, Z., Kargarrazi, S. and Rivas-Davila, J.M. (2019), "Cascode GaN/SiC: A wide-bandgap heterogenous power device for high-frequency applications", IEEE T. Power Electr., 35(6), 6340-6349. https://doi.org/10.1109/TPEL.2019.2954322. DOI |
22 | Qin, X., Liu, Y., Li, X., Xu, J., Chi, B., Zhai, D. and Zhao, X. (2015), "Origin of Dirac cones in SiC silagraphene: A combined density functional and tight-binding study", J. Phys. Chem. Lett., 6(8), 1333-1339. https://doi.org/10.1021/acs.jpclett.5b00365. DOI |
23 | Shi, Z., Zhang, Z., Kutana, A. and Yakobson, B.I. (2015), "Predicting two-dimensional silicon carbide monolayers", ACS Nano, 9(10), 9802-9809. https://doi.org/10.1021/acsnano.5b02753. DOI |
24 | Wong, K.L., Chuan, M.W., Alias, N.E., Hamzah, A., Lim, C.S. and Tan, M.L.P. (2019), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., 7(3), 209-221. http://doi.org/10.12989/anr.2019.7.3.209. DOI |
25 | Zhao, K., Zhao, M., Wang, Z. and Fan, Y. (2010), "Tight-binding model for the electronic structures of SiC and BN nanoribbons", Physica E, 43(1), 440-445. https://doi.org/10.1016/j.physe.2010.08.025. DOI |
26 | Geim, A.K. and Novoselov, K.S. (2007), "The rise of graphene", Nat. Mater., 6(3), 183-191. https://doi.org/10.1038/nmat1849. DOI |
27 | Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2021a), "Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor", Adv. Nano Res., 10(1), 91-99. https://doi.org/10.12989/anr.2021.10.1.091. DOI |
28 | Datta, S. (1997), Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, U.K. https://doi.org/10.1017/CBO9780511805776. DOI |
29 | Ding, Y. and Wang, Y. (2014), "Geometric and Electronic Structures of Two-Dimensional SiC3 Compound", J. Phys. Chem. C, 118(8), 4509-4515. https://doi.org/10.1021/jp412633y. DOI |
30 | Dong, H., Zhou, L., Frauenheim, T., Hou, T., Lee, S.T. and Li, Y. (2016), "SiC7 siligraphene: A novel donor material with extraordinary sunlight absorption", Nanoscale, 8(13), 6994-6999. https://doi.org/10.1039/C6NR00046K. DOI |
31 | Goh, E., Chin, H.C., Wong, K.L., Indra, I.S.B. and Tan, M.L.P. (2018), "Modeling and simulation of the electronic properties in graphene nanoribbons of varying widths and lengths using tight-binding hamiltonian", J. Nanoelectr. Optoelectr., 13(2), 289-300. https://doi.org/10.1166/jno.2018.2206. DOI |
![]() |