DOI QR코드

DOI QR Code

Rhodomine B dye removal and inhibitory effect on B. subtilis and S. aureus by WOx nanoparticles

  • Ying, Yuet Lee (School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia) ;
  • Pung, Swee Yong (School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia) ;
  • Ong, Ming Thong (Institute for Molecular Medicine Research (INFORMM), Universiti Sains Malaysia) ;
  • Pung, Yuh Fen (Department of Biomedical Sciences, University of Nottingham (Malaysia Campus))
  • Received : 2018.02.07
  • Accepted : 2018.07.16
  • Published : 2018.11.25

Abstract

Visible-light-driven wide bandgap semiconductor photocatalysts were commonly developed via doping or coupling with another narrow bandgap metal oxide. However, these approaches required extra processing. The aim of study was to evaluate the photocatalytic performance of narrow bandgap $WO_x$ nanoparticles. A mixture of $WO_2$ and $WO_3$ nanoparticles were synthesized using solution precipitation technique. The photodegradation of RhB by these nanoparticles more effective in UV light than in visible light. In antibacterial susceptibility assay, $WO_x$ nanoparticles demonstrated good antibacterial against Gram-positive bacteria. The cell wall of bacterial was the main determinant in antibacterial effect other than $W^{4+}/W^{6+}$ ions and ROS.

Keywords

Acknowledgement

Supported by : Ministry of Higher Education, Nottingham University

References

  1. L. Hu, G. Zeng, G. Chen, H. Dong, Y. Liu, J. Wan, A. Chen, Zh. Guo, M. Yan, H. Wu, Zh. Yu, J. Hazard. Mater. 301 (2016) 106. https://doi.org/10.1016/j.jhazmat.2015.08.060
  2. L. Hu, J. Wan, G. Zeng, A. Chen, G. Chen, Z. Huang, K. He, M. Cheng, C. Zhou, W. Xiong, C. Lai, P. Xu, Environ. Sci.: Nano 4 (2017) 2018. https://doi.org/10.1039/C7EN00517B
  3. L. Hu, C. Zhang, G. Zeng, G. Chen, J. Wan, Z. Guo, H. Wu, Z. Yu, Y. Zhou, J. Liu, RSC Adv. 6 (2016) 78595. https://doi.org/10.1039/C6RA13016J
  4. V.K. Yemmireddy, Y.C. Hung, Compr. Rev. Food Sci. Food Saf. 16 (2017) 617. https://doi.org/10.1111/1541-4337.12267
  5. C.T. Long, N. Saleh, R.D. Tilton, G. Lowry, B. Veronesi, Environ. Sci. Technol. 40 (2006) 4346. https://doi.org/10.1021/es060589n
  6. S. Magrez, V. Kasas, N. Salicio, J. Pasquier, W. Seo, M. Celio, S. Catsicas, B. Schwaller, L. Forro, Nano. Lett. 6 (2006) 1121. https://doi.org/10.1021/nl060162e
  7. M.T. Thein, S.Y. Pung, A. Aziz, M. Itoh, J. Taiwan Inst. Chem. Eng. 61 (2016) 156. https://doi.org/10.1016/j.jtice.2015.11.024
  8. Y.L. Chan, S.Y. Pung, S. Sreekantan, F.Y. Yeoh, J. Exp. Nanosci. 8 (2015) 603.
  9. M.R. Belkhedkar, A.U. Ubale, Y.S. Sakhare, N. Zubair, M. Musaddique, J. Assoc. Arab Univ. Basic Appl. Sci. 21 (2016) 38.
  10. C.Y. Zhou, C. Lai, D.L. Huang, G.M. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W.P. Xiong, M. Wen, X.F. Wen, L. Qin, Appl. Catal. B: Environ. 220 (2018) 202. https://doi.org/10.1016/j.apcatb.2017.08.055
  11. C. Zhou, C. Lai, P. Xu, G. Zeng, D. Huang, C. Zhang, M. Cheng, L. Hu, J. Wan, Y. Liu, W. Xiong, Y. Deng, M. Wen, ACS Sustain. Chem. Eng. 6 (3) (2018) 4174. https://doi.org/10.1021/acssuschemeng.7b04584
  12. B. Yang, P.R.F. Barnes, V. Luca, J. Mater. Chem. 17 (2007) 2722. https://doi.org/10.1039/B702097J
  13. K. Hong, M. Xie, R. Hu, H. Wu, Appl. Phys. Lett. 90 (2007) 173121. https://doi.org/10.1063/1.2734175
  14. X.P. Wang, B.Q. Yang, H.X. Zhang, P.X. Feng, Nanoscale Res. Lett. 2 (2007) 405. https://doi.org/10.1007/s11671-007-9075-3
  15. S. Supothina, P. Seeharaj, S. Yoriya, M. Sriyudthsak, Ceram. Int. 33 (2007) 931. https://doi.org/10.1016/j.ceramint.2006.02.007
  16. P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, N. Muensit, Superlattices Microstruct. 51 (1) (2012) 103. https://doi.org/10.1016/j.spmi.2011.11.002
  17. E.O. Zayim, A. Tabatabaei Mohseni, in: H. Unlu, N. Horing, J. Dabrowski (Eds.), NanoScience and Technology, Springer, Cham, 2016, pp. 291.
  18. Y. Djaoued, S. Balaji, R. Bruning, J. Nanomater. 2012 (2012) 9.
  19. D.E. Williams, S.R. Aliwell, K.F.E. Pratt, D.J. Caruana, R.L. Jones, R.A. Cox, G.M. Hansford, J. Halsall, Meas. Sci. Technol. 13 (2002) 923. https://doi.org/10.1088/0957-0233/13/6/314
  20. P. Pradyot, Handbook of Inorganic Chemical Compounds, McGraw-Hill, New York, 2003.
  21. A. Sangeeta, S. Debasiah, M. Giridhar, RSC Adv. 5 (2015) 11895. https://doi.org/10.1039/C4RA13210F
  22. K.J. Patel, M.S. Desai, C.J. Panchal, H.N. Deota, U.B. Trivedi, J. Nano Electron Phys. 5 (2013) 02023.
  23. F. Chekin, S. Bagheri, S. Bee, A. Hamid, J. Chin. Chem. Soc. 60 (2013) 447. https://doi.org/10.1002/jccs.201200298
  24. E. Karacsonyi, L. Baia, A. Dombi, V. Danciu, K. Mogyorosi, L.C. Pop, G. Kovacs, V. Cosoveanu, A. Vulpoi, S. Simon, Z. Pap, Catal. Today 208 (2013) 19. https://doi.org/10.1016/j.cattod.2012.09.038
  25. I. Szilagyi, B. Forizs, O. Rosseler, A. Szegedi, P. Nemeth, P. Kiraly, G. Tarkanyi, B. Vajna, K. Varga-Josepovits, K. Laszlo, A.L. Toth, P. Baranyai, M. Leskela, J. Catal. 294 (2012) 119. https://doi.org/10.1016/j.jcat.2012.07.013
  26. Y. Wicaksana, S. Liu, J. Scott, R. Amal, Molecules 19 (2014) 17747. https://doi.org/10.3390/molecules191117747
  27. P. Dong, B. Yang, C. Liu, F. Xu, X. Xi, G. Hou, R. Shao, RSC Adv. 7 (2017) 947. https://doi.org/10.1039/C6RA25272A
  28. V. Vinesh, T. Sakthivel, N. Gouthami, K. Kiranpreethi, R.P. Arulselvi, V. Gunasekaran, J. Nanosci. Nanotechnol. 18 (2018) 3320. https://doi.org/10.1166/jnn.2018.14853
  29. W.L. Nicholson, Cell. Mol. Life Sci. 59 (2002) 410. https://doi.org/10.1007/s00018-002-8433-7
  30. Y. Yoshpe-purer, S. Golderman, Appl. Environ. Microbiol. 53 (5) (1987) 1138.
  31. Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu, M. Lin, J. Appl. Microbiol.107 (4) (2009) 1193. https://doi.org/10.1111/j.1365-2672.2009.04303.x
  32. G. Cui, W. Wang, J. Xie, X. Shi, N. Deng, J. Xin, B. Tang, Nano Lett.15 (2015) 7199. https://doi.org/10.1021/acs.nanolett.5b01581
  33. M. Wu, X. Lin, A. Hagfeldt, T. Ma, Chem. Commun. 47 (c) (2011) 4535. https://doi.org/10.1039/c1cc10638d
  34. R. Ji, D. Zheng, C. Zhou, J. Cheng, J. Yu, L. Li, Materials 10 (2017) 820. https://doi.org/10.3390/ma10070820
  35. M. Feng, A.L. Pan, H.R. Zhang, Z.A. Li, F. Liu, H.W. Liu, D.X. Shi, B.S. Zou, H.J. Gao, Appl. Phys. Lett. 86 (2005) 141901. https://doi.org/10.1063/1.1898434
  36. L. Sun, D. Zhao, Z. Song, C. Shan, Z. Zhang, B. Li, D. Shen, J. Colloid Interface Sci. 363 (1) (2011) 175. https://doi.org/10.1016/j.jcis.2011.07.005
  37. R.O. Rahn, J. Photochem. Photobiol. 66 (4) (1997) 450. https://doi.org/10.1111/j.1751-1097.1997.tb03172.x
  38. M. Shen, M.A. Henderson, J. Phys. Chem. Lett. 2 (2011) 2707. https://doi.org/10.1021/jz201242k
  39. Y.W. Baek, Y.J. An, Sci. Total Environ. 409 (2011) 1603. https://doi.org/10.1016/j.scitotenv.2011.01.014
  40. A.S. Haja Hameed, C. Karthikeyan, V. Senthil Kumar, S. Kumaresan, S. Sasikumar, Mater. Sci. Eng. C 52 (2015) 171. https://doi.org/10.1016/j.msec.2015.03.030
  41. N. Talebian, M.R. Nilforoushan, E.B. Zargar, Appl. Surf. Sci. 258 (1) (2011) 547. https://doi.org/10.1016/j.apsusc.2011.08.070
  42. A. Zielinska-Jurek, Z. Bielan, I. Wysocka, J. Strychalska, M. Janczarek, T. Klimczuk, J. Environ. Manage. 195 (2) (2017) 157. https://doi.org/10.1016/j.jenvman.2016.06.056
  43. Q. Xue, Y. Liu, Q. Zhou, M. Utsumi, Z. Zhang, N. Sugiura, Chem. Eng. J. 283 (2016) 614. https://doi.org/10.1016/j.cej.2015.08.016
  44. S.N.Q.A.A. Aziz, R.A. Kamazahruman, S. Sreekantan, M.T. Ong, G. Sahgal, S.Y. Pung, Procedia Eng. 184 (2017) 695. https://doi.org/10.1016/j.proeng.2017.04.145
  45. H.W. Huang, S.C. Tu, C. Zeng, T.R. Zhang, A.H. Reshak, Y.H. Zhang, Angew. Chem. Int. Ed. 56 (2017) 11860. https://doi.org/10.1002/anie.201706549
  46. H.W. Huang, K. Xiao, Y. He, T.R. Zhang, F. Dong, X. Du, Y.H. Zhang, Appl. Catal. B: Environ. 199 (2016) 75. https://doi.org/10.1016/j.apcatb.2016.06.020
  47. H.W. Huang, Y. He, X.W. Li, M. Li, C. Zeng, F. Dong, X. Du, T.R. Zhang, Y.H. Zhang, J. Mater. Chem. A 3 (2015) 24547. https://doi.org/10.1039/C5TA07655B
  48. K. Akhil, J. Jayakumar, G. Gayathri, S.S. Khan, J. Photochem. Photobiol. B: Biol. 160 (2016) 32. https://doi.org/10.1016/j.jphotobiol.2016.03.015
  49. L. Huang, D. Li, Y. Lin, M. Wei, D.G. Evans, X. Duan, J. Inorg. Biochem. 99 (2005) 986. https://doi.org/10.1016/j.jinorgbio.2004.12.022
  50. V. Rajendar, T. Dayakar, K. Shobhan, I. Srikanth, K. Venkateswara Rao, Superlattices Microstruct. 75 (2014) 551. https://doi.org/10.1016/j.spmi.2014.07.049
  51. T. Gordon, B. Perlstein, O. Houbara, I. Felner, E. Banin, S. Margel, Colloids Surf. A: Physicochem. Eng. Asp. 374 (2011) 1. https://doi.org/10.1016/j.colsurfa.2010.10.015
  52. N. Li, H. Teng, L. Zhang, J. Zhou, M. Liu, RSC Adv. 5 (2013) 95394.
  53. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, S. Jenefar, V. Kaviyarasan, J. Mater. Sci. Technol. 30 (11) (2014) 1108. https://doi.org/10.1016/j.jmst.2014.07.013
  54. A.W. Wren, B.M. Adams, D. Pradhan, M.R. Towler, N.P. Mellott, Mater. Chem. Phys. 144 (3) (2014) 538. https://doi.org/10.1016/j.matchemphys.2014.01.035

Cited by

  1. Modified Alginate Beads with Ethanol Extraction of Cratoxylum formosum and Polygonum odoratum for Antibacterial Activities vol.6, pp.47, 2018, https://doi.org/10.1021/acsomega.1c05056