• Title/Summary/Keyword: Band GAp Energy

Search Result 705, Processing Time 0.03 seconds

The Analysis of Mechanism for the Gas Sensor of MWCNT/ZnO Composites Film Using the NOX Gas Detection Characteristics (NOX 가스 검출 특성을 이용한 MWCNT/ZnO 복합체 필름 가스 센서의 메커니즘 분석)

  • Son, Ju-Hyung;Kim, Hyun-Soo;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.188-192
    • /
    • 2018
  • In this study, we fabricated an $NO_X$ gas sensor using a composite film of multi-walled carbon nanotubes (MWCNT)/zinc oxide (ZnO). Carbon nanotubes (CNTs) show good electronic conductivity and chemical-stability, and zinc oxide (ZnO) is a wide band gap semiconductor with a large exciton binding energy. Gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_X$ gas at different $NO_X$ concentrations. The sensitivity of the gas sensor increased with increasing gas concentrations. Additionally, while changing the temperature inside the chamber containing the MWCNT/ZnO gas sensor, we obtained the sensitivity and normalized responses for detecting $NO_X$ gas in comparison to ZnO and MWCNT film gas sensors. From the experimental results, we confirmed that the gas sensor sensing mechanism was enhanced in the composite-film gas-sensor and that the electronic interaction between MWCNT and ZnO contributed to the improved sensor performance.

Effects of Working Pressure on the Electrical and Optical Properties of GZO Thin Films Deposited on PES Substrate (PES 기판에 성장시킨 GZO 박막의 전기적 및 광학적 특성에 미치는 공정압력의 영향)

  • Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1393-1398
    • /
    • 2015
  • In this study, the electrical and optical properties of GZO (Ga-doped ZnO) thin films prepared on PES substrates by RF magnetron sputtering method with various working pressures (5 to 20 mTorr) were investigated. All GZO thin films exhibited c-axis preferential growth regardless of working pressure, the GZO thin film deposited at 5 mTorr showed the most excellent crystallinity having 0.44˚ of FWHM. In AFM observations, surface roughness exhibited the lowest value of 0.20 nm in a thin film produced by the working pressure 5 mTorr. Figure of merits of GZO thin film deposited at 5 mTorr showed the highest value of 6652, in this case resistivity and average transmittance in the visible light region were 6.93×10-4Ω-cm and 81.4%, respectively. We could observed the Burstein-Moss effect that carrier concentration decrease with the increase of working pressure and thus the energy band gap is narrowed.

Evaluation on the Phase-Change Properties in W-doped Ge8Sb2Te11 Thin Films for Amorphous-to-Crystalline Reversible Phase-Change Device (비정질-결정질 가역적 상변환 소자용 Ge8Sb2Te11 박막의 W 도핑에 따른 상변환 특성 평가)

  • Park, Cheol-Jin;Yeo, Jong-Bin;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.133-138
    • /
    • 2017
  • We evaluated the structural, electrical and optical properties of tungsten (W)-doped $Ge_8Sb_2Te_{11}$ thin films. In a previous work, GeSbTe alloys were doped with different materials in an attempt to improve thermal stability. 200 mm thick $Ge_8Sb_2Te_{11}$ and W-doped $Ge_8Sb_2Te_{11}$ films were deposited on p-type Si (100) and glass substrates using a magnetron co-sputtering system at room temperature. The fabricated films were annealed in a furnace in the $0{\sim}400^{\circ}C$ temperature range. The structural properties were analyzed using X-ray diffraction (X'pert PRO, Phillips). The results showed increased crystallization temperature ($T_c$) leading to thermal stability in the amorphous state. The optical properties were analyzed using an UV-Vis-IR spectrophotometer (Shimadzu, U-3501, range : 300~3,000 nm). The results showed an increase in the crystalline material optical energy band gap ($E_{op}$) and an increase in the $E_{op}$ difference (${\Delta}E_{op}$). This is a good effect to reduce memory device noise. The electrical properties were analyzed using a 4-point probe (CNT-series). This showed increased sheet resistance ($R_s$), which reduces programming current in the memory device.

Revealing Strong Metal Support Interaction during CO Oxidation with Metal Nanoparticle on Reducible Oxide Substrates

  • Park, Dahee;Kim, Sun Mi;Qadir, Kamran;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.264-264
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic ac-tivity for heterogeneous catalysis. In this study, we investigated the support effect and the role of organic capping layers of two-dimensional Pt nanocatalysts on reducible metal oxide supports under the CO oxidation. Several reducible metal oxide supports including CeO2, Nb2O5, and TiO2 thin films were prepared via sol-gel techniques. The structure, chemical state and optical property were characterized using XRD, XPS, TEM, SEM, and UV-VIS spectrometer. We found that the reducible metal oxide supports have a homogeneous thin thickness and crystalline structure after annealing at high temperature showing the different optical band gap energy. Langmuir-Blodgett technique and arc plasma deposition process were employed to ob-tain Pt nanoparticle arrays with capping and without capping layers, respectively on the oxide support to assess the role of the supports and capping layers on the catalytic activity of Pt catalysts under the CO oxidation. The catalytic performance of CO oxidation over Pt supported on metal oxide thin films under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) was tested. The results show that the catalytic activity significantly depends on the metal oxide support and organic capping layers of Pt nanoparticles, revealing the strong metal-support interaction on these nanocatalysts systems.

  • PDF

The Effect of the Oxygen Flow Rate on the Electronic Properties and the Local Structure of Amorphous Tantalum Oxide Thin Films

  • Denny, Yus Rama;Lee, Sunyoung;Lee, Kangil;Kang, Hee Jae;Yang, Dong-Seok;Heo, Sung;Chung, Jae Gwan;Lee, Jae Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.398-398
    • /
    • 2013
  • The electronic properties and the local structure of tantalum oxide thin film with variation of oxygen flow rate ranging from 9.5 to 16 sccm (standard cubic centimeters per minute) have been investigated by X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results show that the Ta4f spectrum for all films consist of the strong spin-orbit doublet $Ta4f_{7/2}$ and $Ta4f_{5/2}$ with splitting of 1.9 eV. The oxygen flow rate of the film results in the appearance of new features in the Ta4f at binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV, these peaks attribute to $Ta^{1+}$, $Ta^{2+}$, $Ta^{4+}$/$Ta^{2+}$, and $Ta^{5+}$, respectively. Thus, the presence of non-stoichiometric state from tantalum oxide ($TaO_x$) thin films could be generated by the oxygen vacancies. The REELS spectra suggest the decrease of band gap for tantalum oxide thin films with increasing the oxygen flow rate. The absorption coefficient ${\mu}$ and its fine structure were extracted from the fluorescence mode of extended X-ray absorption fine structure (EXAFS) spectra. In addition, bond distances (r), coordination numbers (N) and Debye-Waller factors (${\sigma}^2$) each film were determined by a detailed of EXAFS data analysis. EXAFS spectrapresent both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the increase of oxygen flow rate.

  • PDF

Characterization of Atomic-Layer Deposited ZnSnO Buffer Layer for 18%- Efficiency Cu(In,Ga)Se2 Solar Cells (18% 효율 Cu(In,Ga)Se2 박막태양전지용 ZnSnO 버퍼층의 원자층 증착법 및 분석)

  • Kim, Sun Cheul;Kim, Seung Tae;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.54-60
    • /
    • 2015
  • ZnSnO thin films were deposited by atomic layer deposition (ALD) process using diethyl zinc ($Zn(C_2H_5)_2$) and tetrakis (dimethylamino) tin ($Sn(C_2H_6N)_4$) as metal precursors and water vapor as a reactant. ALD process has several advantages over other deposition methods such as precise thickness control, good conformality, and good uniformity for large area. The composition of ZnSnO thin films was controlled by varying the ratio of ZnO and $SnO_2$ ALD cycles. The ALD ZnSnO film was an amorphous state. The band gap of ZnSnO thin films increased as the Sn content increased. The CIGS solar cell using ZnSnO buffer layer showed about 18% energy conversion efficiency. With such a high efficiency with the ALD ZnSnO buffer and no light soaking effect, AlD ZnSnO buffer mighty be a good candidate to replace Zn(S,O) buffer in CIGSsolar cells.

Effect of Se Flux and Se Treatment on the Photovoltaic Performance of β-CIGS Solar Cells

  • Kim, Ji Hye;Cha, Eun Seok;Park, Byong Guk;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.39-44
    • /
    • 2015
  • $Cu(In,Ga)_3Se_5$ (${\beta}-CIGS$) has a band gap of 1.35 eV which is an optimum value for high solar-energy conversion efficiency. However, ${\beta}-CIGS$ film was not well characterized yet due to lower efficiency compared to $Cu(In,Ga)Se_2$ (${\alpha}-CIGS$). In this work, ${\beta}-CIGS$ films were fabricated by a three-stage co-evaporation of elemental sources with various Se fluxes. As the Se flux increased, the crystallinity of ${\beta}-CIGS$ phase was improved from the analysis of Raman spectroscopy and a deep-level defect was reduced from the analysis of photoluminescence spectroscopy. A Se treatment of the ${\beta}-CIGS$ film at $200^{\circ}C$ increased Ga content and decreased Cu content at the surface of the film. With the Se treatment at $200^{\circ}C$, the cell efficiency was greatly improved for the CIGS films prepared with low Se flux due to the increase of short-circuit current and fill factor. It was found that the main reason of performance improvement was lower Cu content at the surface instead of higher Ga content.

Diffusion and Oxidation of Ti3+ Interstitials on a Reduced TiO2 (001) Surface: A Crystal-face Dependency (TiO2 (001)면에서 Ti 결함의 확산과 산화: 결정면에 대한 의존성)

  • Kim, Yu-Kwon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.242-248
    • /
    • 2012
  • Valence band of a vacuum-reduced $TiO_2$ (001) surface has been carefully examined using synchrotron x-ray photoelectron spectroscopy to investigate variation of the gap state upon oxidation and thermal diffusion of $Ti^{3+}$ interstitials from the bulk. We compare our results with that obtained from $TiO_2$ (110) and aim to address a crystal-face dependency in the oxidation and diffusion rates of $Ti^{3+}$ interstitials. We find very similar behaviors in the oxidation and thermal diffusion rate of $Ti^{3+}$ interstitials between the two crystal faces suggesting a negligible crystal-face dependency in this case.

Growth and Effect of Thermal Annealing for CuInse2 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 CuInse2 단결정 박막 성장과 열처리 효과)

  • Lee Gyungou;Hong Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.755-763
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInse_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuInse_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C\;and\;410^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $CuInse_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)=1.1851 eV - (8.99{\times}10^{-4} eV/K)T^2/(T+153 K)$. After the aa-grown $CuInse_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres, the origin of point defects of $CuInse_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{cu},\;V_{Se},\;Cu_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInse_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInse_2$/GaAs did not form the native defects because In in $CuInse_2$ single crystal thin films existed in the form of stable bonds.

Photoelectrochemical Cell Study on Closely Arranged Vertical Nanorod Bundles of CdSe and Zn doped CdSe Films

  • Soundararajan, D.;Yoon, J.K.;Kwon, J.S.;Kim, Y.I.;Kim, S.H.;Park, J.H.;Kim, Y.J.;Park, D.Y.;Kim, B.C.;Wallac, G.G.;Ko, J.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2185-2189
    • /
    • 2010
  • Closely arranged CdSe and Zn doped CdSe vertical nanorod bundles were grown directly on FTO coated glass by using electrodeposition method. Structural analysis by XRD showed the hexagonal phase without any precipitates related to Zn. FE-SEM image showed end capped vertically aligned nanorods arranged closely. From the UV-vis transmittance spectra, band gap energy was found to vary between 1.94 and 1.98 eV due to the incorporation of Zn. Solar cell parameters were obtained by assembling photoelectrochemical cells using CdSe and CdSe:Zn photoanodes, Pt cathode and polysulfide (1M $Na_2S$ + 1M S + 1M NaOH) electrolyte. The efficiency was found to increase from 0.16 to 0.22 upon Zn doping. Electrochemical impedance spectra (EIS) indicate that the charge-transfer resistance on the FTO/CdSe/polysulfide interface was greater than on FTO/CdSe:Zn/polysulfide. Cyclic voltammetry results also indicate that the FTO/CdSe:Zn/polysulfide showed higher activity towards polysulfide redox reaction than that of FTO/CdSe/polysulfide.