Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.3.133

Evaluation on the Phase-Change Properties in W-doped Ge8Sb2Te11 Thin Films for Amorphous-to-Crystalline Reversible Phase-Change Device  

Park, Cheol-Jin (Department of Advanced Chemicals and Engineering, Chonnam National University)
Yeo, Jong-Bin (The Research Institute of Catalysis, Chonnam National University)
Kong, Heon (Department of Advanced Chemicals and Engineering, Chonnam National University)
Lee, Hyun-Yong (School of Chemical Engineering, Chonnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.3, 2017 , pp. 133-138 More about this Journal
Abstract
We evaluated the structural, electrical and optical properties of tungsten (W)-doped $Ge_8Sb_2Te_{11}$ thin films. In a previous work, GeSbTe alloys were doped with different materials in an attempt to improve thermal stability. 200 mm thick $Ge_8Sb_2Te_{11}$ and W-doped $Ge_8Sb_2Te_{11}$ films were deposited on p-type Si (100) and glass substrates using a magnetron co-sputtering system at room temperature. The fabricated films were annealed in a furnace in the $0{\sim}400^{\circ}C$ temperature range. The structural properties were analyzed using X-ray diffraction (X'pert PRO, Phillips). The results showed increased crystallization temperature ($T_c$) leading to thermal stability in the amorphous state. The optical properties were analyzed using an UV-Vis-IR spectrophotometer (Shimadzu, U-3501, range : 300~3,000 nm). The results showed an increase in the crystalline material optical energy band gap ($E_{op}$) and an increase in the $E_{op}$ difference (${\Delta}E_{op}$). This is a good effect to reduce memory device noise. The electrical properties were analyzed using a 4-point probe (CNT-series). This showed increased sheet resistance ($R_s$), which reduces programming current in the memory device.
Keywords
Phase-change; $Ge_8Sb_2Te_{11}$; Chalcogenide; PRAM; Tungsten;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Scholickermann, and M. Wutting, Nature Mater., 10, 202 (2011). [DOI: https://doi.org/10.1038/nmat2934]   DOI
2 K. H. Song, S. C. Baek, and H. Y. Lee, J. Korean Phys. Soc., 61, 10 (2012). [DOI: https://doi.org/10.3938/jkps.61.10]   DOI
3 G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Goplalkrishnan, B, Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, J. Vac. Sci. Technol. B, 28, 223 (2010). [DOI: https://doi.org/10.1116/1.3301579]   DOI
4 M. H. Jang, S. J. Park, D. H. Lim, M. H. Cho, K. H. Do, D. H. Ko, and H. C. Sohn, Appl. Phys. Lett., 95, 012102 (2009). [DOI: https://doi.org/10.1063/1.3168551]   DOI
5 S. H. Kim, J. B. Park, W. T. Lee, J. Y. Woo, C. H. Cho, M. Siddik, J. H. Shin, S. S. Park, B. H. Lee, and H. S. Hwang, Appl. Phys. Lett., 99, 192110 (2011). [DOI: https://doi.org/10.1063/1.3659692]   DOI
6 B. Prasai, G. Chen, and D. A. Drabold, Appl. Phys. Lett., 102, 041907 (2011). [DOI: https://doi.org/10.1063/1.4789877]
7 J. H. Seo, K. H. Song, and H. Y. Lee, J. Appl. Phys., 47, 5337 (2008). [DOI: https://doi.org/10.1143/JJAP.47.5337]   DOI
8 S. W. Kim, W. S. Lim, T. W. Kim, and H. Y. Lee, Jpn. J. Appl. Phys., 47, 5337 (2008).   DOI
9 A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, IEEE Trans on Electronic Devices., 51, 452 (2004).   DOI
10 Y. Utsugi and Y. Mizushima, J. Appl. Phys., 51, 1773 (1980). [https://doi.org/10.1063/1.327738]   DOI
11 J. Kalb, F. Spaepen, and M. Wutting, Appl. Phys. Lett., 84, 5240 (2004). [DOI: https://doi.org/10.1063/1.1764591]   DOI
12 B. Gurbulak, S. Duman, and A. Ates, Czech, J. Phys., 55, 93 (2004). [DOI: https://doi.org/10.1007/s10582-005-0011-4]
13 K. H. Song, J. H. Seo, J. H. Kim, and H. Y. Lee, J. Appl. Phys., 106, 123529 (2009). [DOI: ttps://doi.org/10. 1063/1.3273400]   DOI