Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.11.755

Growth and Effect of Thermal Annealing for CuInse2 Single Crystal Thin Film by Hot Wall Epitaxy  

Lee Gyungou (Department of Physics, Chosun University)
Hong Kwangjoon (Department of Physics, Chosun University)
Publication Information
Korean Journal of Materials Research / v.14, no.11, 2004 , pp. 755-763 More about this Journal
Abstract
A stoichiometric mixture of evaporating materials for $CuInse_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuInse_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C\;and\;410^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $CuInse_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)=1.1851 eV - (8.99{\times}10^{-4} eV/K)T^2/(T+153 K)$. After the aa-grown $CuInse_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres, the origin of point defects of $CuInse_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{cu},\;V_{Se},\;Cu_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInse_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInse_2$/GaAs did not form the native defects because In in $CuInse_2$ single crystal thin films existed in the form of stable bonds.
Keywords
point defect; hot wall epitaxy; single crystal thin film; thermal annealing; photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boy D, G. D., Kasper, H. M. and McFee, J. H, IEEE, J. Quantum Electro QE7, 563 (1971)   DOI
2 Shay, J. L. and Wernick, J. H., Ternary chalcopyrite semiconductor : electronic properties, and applications, pergamon, chap. 4(1975)
3 H. C. Casey, Jr. and R. H. Kaiser, J. Electrochem. Soc. 114, 149 (1967)   DOI
4 S. Bendapudi and D. N. Bose, Appl. Phays. Lett. 42, 287 (1983)   DOI
5 J. Parkes and M. J. Hampshire, J. Appl. cryst. 6, 414 (1973)   DOI
6 Elizabeth A. wood, Crystal Orientation manual, Columbia university press (1963)
7 H. Fujita, J. Phys. Soc., Jpn., 20, 109 (1965)   DOI
8 Y. P. Varshni, Physica, 34, 149 (1967)   DOI   ScienceOn
9 B. D. Cullity, 'Elements of X-ray Diffractions' Caddson-Wesley, chap 11 (1985)
10 W. Horig and H. Sobotta, Journal of Crystal Growth, 48, 67 (1978)
11 K. J. Hong and T. S. Jeong, Journal of Crystal Growth, 172, 89 (1997)   DOI   ScienceOn
12 David cahen, P. J. Ireland, L. L. Kazmerski and F. A. Thiel, J. Appl. Phys., 57(2), 4761 (1985)   DOI
13 K. J. Hong and T. S. Jeong, Journal of Crystal Growth, 218, 19 (2000)   DOI   ScienceOn
14 Sigurd Wagner, J. L. Shay and P. Migliorat, Applied Physics Letters, 25(8), 434 (1974)   DOI
15 V. Riede, H. Neumann and Xuan Nguyen, 28, 449 (1978)   DOI   ScienceOn
16 I. Shih, C. H. Champness and A. Vahid Shahihi, Solar cells, 16, 27 (1984)   DOI   ScienceOn
17 P. Migliorato and J. L. Shay, J. Appl. Phys., 146(4), 1777 (1975)   DOI   ScienceOn
18 C. Rincon and G. Sanchez, Crystal Research Technology, 16(19S1), 1369 (1983)
19 D. Haneman and J. Szot, Appl. Phys. Lett., 46(8), 778 (1985)   DOI
20 Richard K. Ahrenkiel and T. R. Massopust, Appl. Phys. Lett., 43(7), 658 (1983)   DOI
21 D. M. Eagles, J. Phys. Chem. Solids, 16, 76 (1960)   DOI   ScienceOn