Browse > Article
http://dx.doi.org/10.5757/JKVS.2012.21.5.242

Diffusion and Oxidation of Ti3+ Interstitials on a Reduced TiO2 (001) Surface: A Crystal-face Dependency  

Kim, Yu-Kwon (Department of Chemistry and Energy Systems Research, Ajou University)
Publication Information
Journal of the Korean Vacuum Society / v.21, no.5, 2012 , pp. 242-248 More about this Journal
Abstract
Valence band of a vacuum-reduced $TiO_2$ (001) surface has been carefully examined using synchrotron x-ray photoelectron spectroscopy to investigate variation of the gap state upon oxidation and thermal diffusion of $Ti^{3+}$ interstitials from the bulk. We compare our results with that obtained from $TiO_2$ (110) and aim to address a crystal-face dependency in the oxidation and diffusion rates of $Ti^{3+}$ interstitials. We find very similar behaviors in the oxidation and thermal diffusion rate of $Ti^{3+}$ interstitials between the two crystal faces suggesting a negligible crystal-face dependency in this case.
Keywords
Oxidation; $Ti^{3+}$ defects; $TiO_2$ (001); Photoemission spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. N. Hwang, H. S. Kim, B. Kim, C. C. Hwang, S. W. Moon, S. M. Chung, C. Jeon, C. Y. Park, K. H. Chae, and W. K. Choi, Nucl. Instrum. Methods Phys. Res. A 581, 850 (2007).   DOI
2 C. G. Mason, S. P. Tear, T. N. Doust, and G. Thornton, J. Phys. Condens. Matt. 3, S97 (1991).   DOI
3 H. Ariga, T. Taniike, H. Morikawa, M. Tada, B. K. Min, K. Watanabe, Y. Matsumoto, S. Ikeda, K. Saiki, and Y. Iwasawa, J. Am. Chem. Soc. 131, 14670 (2009).   DOI
4 H. Perron, C. Domain, J. Roques, R. Drot, E. Simoni, and H. Catalette, Theor. Chem. Acc. 117, 565 (2007).   DOI
5 M. Ramamoorthy, D. Vanderbilt, and R. D. King- Smith, Phys. Rev. B 49, 16721 (1994).   DOI
6 Y. K. Kim, M. H. Lee, and H. W. Yeom, Phys. Rev. B 7111, 5311 (2005).
7 S. Wendt, R. Bechstein, S. Porsgaard, E. Lira, J. Hansen, P. Huo, Z. Li, and B. Hammer, F. Besenbacher, Phys. Rev. Lett. 104, 259703 (2010).   DOI
8 U. Diebold, Surf. Sci. Rep. 48, 53 (2003).   DOI   ScienceOn
9 V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Phys. Rev. Lett. 36, 1335 (1976).   DOI
10 R. H. Tait and R. V. Kasowski, Phys. Rev. B 1979, 20, 5178.   DOI
11 S. Wendt, P. T. Sprunger, E. Lira, G. K. H. Madsen, Z. S. Li, J. O. Hansen, J. Matthiesen, A. Blekinge- Rasmussen, E. Laegsgaard, B. Hammer, and F. Besenbacher, Science 320, 1755 (2008).   DOI
12 C. M. Yim, C. L. Pang, and G. Thornton, Phys. Rev. Lett. 104, 036806 (2010).   DOI
13 C. M. Yim, C. L. Pang, and G. Thornton, Phys. Rev. Lett. 104, 259704 (2010).   DOI
14 K. Mitsuhara, H. Okumura, A. Visikovskiy, M. Takizawa, and Y. J. Kido, Chem. Phys. 136, 124707 (2012).
15 C. Di Valentin, G. Pacchioni, and A. Selloni, Phys. Rev. Lett. 97, 166803 (2006).   DOI
16 P. Krüger, S. Bourgeois, B. Domenichini, H. Magnan, D. Chandesris, P. Le Fèvre, A. M. Flank, J. Jupille, L. Floreano, A. Cossaro, A. Verdini, and A. Morgante, Phys. Rev. Lett. 100, 055501 (2008).   DOI
17 B. J. Morgan and G. W. Watson, Surf. Sci. 601, 5034 (2007).   DOI
18 E. Finazzi, C. Di Valentin, and G. J. Pacchioni, Phys. Chem. C 113, 3382 (2009).   DOI   ScienceOn
19 T. Minato, Y. Sainoo, Y. Kim, H. S. Kato, K. I. Aika, M. Kawai, J. Zhao, H. Petek, T. Huang, W. He, B. Wang, Z. Wang, Y. Zhao, J. Yang, and J. G. Hou, J. Chem. Phys. 130, 124502 (2009).   DOI
20 M. A. Henderson, Surf. Sci. 419, 174 (1999).   DOI