• Title/Summary/Keyword: Banach Saks Property

Search Result 10, Processing Time 0.02 seconds

BANACH-SAKS PROPERTY ON THE DUAL OF SCHLUMPRECHT SPACE

  • Cho, Kyugeun;Lee, Chongsung
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.341-348
    • /
    • 1998
  • In this paper, we show that Schlumprecht space is reflexive and the Dual of Schlumprecht space has the Banach-Saks property and study behavior of block basic sequence in Schlumprecht space.

  • PDF

SOME GEOMETRIC PROPERTY OF BANACH SPACES-PROPERTY (Ck)

  • Lee, Chongsung;Cho, Kyugeun
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.237-244
    • /
    • 2009
  • In this paper, we define property ($C_k$) and show that Property ($C_k$) implies property ($C_{k+1}$). The converse does not hold. Moreover, we prove that property ($C_k$) implies the Banach-Saks property.

  • PDF

SOME CONVEX PROPERTIES IN BANACH SPACES

  • Cho, Kyu-Geun;Lee, Chong-Sung
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.407-416
    • /
    • 2008
  • In this paper, we study property ($B_2$) and property ($D_2$) and their implications.

  • PDF

BANACH SPACE WITH PROPERTY (β) WHICH CANNOT BE RENORMED TO BE B-CONVEX

  • Cho, Kyugeun;Lee, Chongsung
    • Korean Journal of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.161-168
    • /
    • 2006
  • In this paper, we study property (${\beta}$) and B-convexity in reflexive Banach spaces. It is shown that k-uniform convexity implies B-convexity and property (${\beta}$). We also show that there is a Banach space with property (${\beta}$) which cannot be equivalently renormed to be B-convex.

  • PDF

PROPERTY ($D_k$) IN BANACH SPACES

  • Cho, Kyu-Geun;Lee, Chong-Sung
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1519-1525
    • /
    • 2010
  • In this paper, we define property ($D_k$) and get the following strict implications. $$(UC){\Rightarrow}(D_2){\Rightarrow}(D_3){\Rightarrow}{\cdots}{\Rightarrow}(D_{\infty}){\Rightarrow}(BS)$$.

WEAK PROPERTY (βκ)

  • Cho, Kyugeun;Lee, Chongsung
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.415-422
    • /
    • 2012
  • In this paper, we define the weak property (${\beta}_{\kappa}$) and get the following strict implications. $$(UC){\Rightarrow}w-({\beta}_1){\Rightarrow}w-({\beta}_2){\Rightarrow}\;{\cdots}\;{\Rightarrow}w-({\beta}_{\infty}){\Rightarrow}(BS)$$.

ALTERNATE SIGNS AVERAGING PROPERTIES IN BANACH SPACES

  • Cho, Kyug-Eun;Lee, Chong-Sung
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.497-507
    • /
    • 2004
  • In this paper, we first seek the equivalent statements with averaging properties in terms of the regular summability method, secondly define some new averaging properties and study their implications. Finally, we investigate the question of what property is dual to the Banach-Saks property suggested by C. Seifert.