BANACH SPACE WITH PROPERTY (β) WHICH CANNOT BE RENORMED TO BE B-CONVEX

KYUGEUN CHO* AND CHONGSUNG LEE

ABSTRACT. In this paper, we study property (β) and B-convexity in reflexive Banach spaces. It is shown that k-uniform convexity implies B-convexity and property (β) . We also show that there is a Banach space with property (β) which cannot be equivalently renormed to be B-convex.

1. Introduction

Let $(X, \|\cdot\|)$ be a real Banach space and X^* the dual space of X. By B_X and S_X , we denote the closed unit ball and the unit sphere of X, respectively. For any subset A of X by $co(A)(\overline{co}(A))$ we denote the convex hull (closed convex hull) of A

 $(X, \|\cdot\|)$ is called uniformly convex (UC) if for all $\epsilon > 0$, there exists a $\delta > 0$ such that for $x, y \in B_X$ with $\|x - y\| \ge \epsilon$,

$$\left\| \frac{1}{2}(x+y) \right\| \le 1 - \delta.$$

A k-uniformly convex space is defined for $k \geq 2$ in an obvious fashion so that a uniformly convex space is just 2-uniformly convex; $(X, \|\cdot\|)$ is k-uniformly convex if for all $\epsilon > 0$, there exists a $\delta > 0$ such that for $x_1, x_2, \dots, x_k \in B_X$ with $\|x_i - x_j\| \geq \epsilon$ for $i \neq j$ and $i, j = 1, 2, \dots, k$,

$$\left\| \frac{1}{k} \sum_{i=1}^{k} x_i \right\| \le 1 - \delta.$$

Received July 1, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 46B20.

Key words and phrases: property (β) , B-convexity, Banach-Saks property.

^{*} Corresponding author

For a sequence (x_n) in X, we let

$$sep(x_n) = \inf\{\|x_n - x_m\| : n \neq m\}.$$

 $(X, \|\cdot\|)$ is said to have the Kadec-Klee property (KK) if for $x_n \in B_X$, $sep(x_n) > 0$ and $x_n \to x$ weakly, then $\|x\| < 1$. The followings are intermediate notions between (UC) and (KK).

 $(X, \|\cdot\|)$ is uniformly Kadec-Klee property (UKK) if for all $\epsilon > 0$, there exists $\delta > 0$ such that if $x_n \in B_X$, $\operatorname{sep}(x_n) \geq \epsilon$ and $x_n \to x$ weakly, then $\|x\| \leq 1 - \delta$.

 $(X, \|\cdot\|)$ is nearly uniformly convex (NUC) if for all $\epsilon > 0$, there exists $\delta > 0$ if $x_n \in B_X$, $\operatorname{sep}(x_n) \geq \epsilon$, then $\operatorname{co}(x_n) \cap (1 - \delta)B_X \neq \emptyset$.

It is easy to see that $(UKK) \Rightarrow (KK)$ and $(UC) \Rightarrow (NUC)$. Huff [3] showed that a space is (NUC) if and only if it is (UKK) and reflexive. We have the following implication.

$$(UC) \Rightarrow (NUC) \Rightarrow (UKK) \Rightarrow (KK)$$

For any subset C, we denote by $\alpha(C)$ its Kuratowski measure of non-compactness, i.e., the infimum of such $\epsilon > 0$ for which there is a covering of C by a finite number of sets of diameter less than ϵ .

For any $x \notin B_X$, the drop determined by x is the set

$$D(x, B_X) = \operatorname{co}(\{x\} \cup B_X)$$

Rolewicz [8] has defined property (β) . A Banach space X is said to have property (β) if, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$\alpha\Big(D(x,B_X)\backslash B_X\Big)<\epsilon$$

whenever $1 < ||x|| < 1 + \delta$.

The following result is found in [5].

A Banach space X has property (β) if and only if for every $\epsilon > 0$, there exists $\delta > 0$ such that for each element $x \in B_X$ and each sequence $(x_n) \in B_X$ with $\text{sep}(x_n) \ge \epsilon$, there is $k \in \mathbb{N}$ such that

$$\left\| \frac{x + x_k}{2} \right\| \le 1 - \delta.$$

By this result we can easily prove that property (β) implies (NUC). We have finally

$$(UC) \Rightarrow property (\beta) \Rightarrow (NUC) \Rightarrow (UKK) \Rightarrow (KK)$$

A Banach space is said to have the Banach-Saks property if any bounded sequence in the space admits a subsequence whose arithmetic means converges in norm. S. Kakutani [4] showed that Uniform convexity implies the Banach-Saks property. And T. Nishiura and D. Waterman [7] proved that the Banach-Saks property implies reflexivity in Banach spaces

A Banach space X is called (r, δ) -convex if for any r elements $x_1, x_2 \cdots, x_r$ of X with $||x_i|| \leq 1$ there is an alternate signs sequence $\epsilon = (\epsilon_i)_{i=1}^r$ of ± 1 such that $||\epsilon_1 x_1 + \cdots + \epsilon_r x_r|| \leq r(1 - \delta)$. A Banach space X which is (r, δ) -convex for some r and some $\epsilon > 0$ is called B-convex.

To end with this introduction, let us mention the following lemma.

LEMMA 1 [6]. Let $(Y, \|\cdot\|)$ be a Banach space with basis $(e_i : i \in I)$ (unconditional if I is noncountable) and such that, for every finite subset J of I,

if
$$0 \le |\alpha_j| \le \beta_j, j \in J$$
, then $\left\| \sum_{j \in J} \alpha_j e_j \right\| \le \left\| \sum_{j \in J} \beta_j e_j \right\|$.

Let $(X_i, i \in I)$ be a family of finite dimensional Banach space. Let

$$Z := \left\{ (x_i)_{i \in I} \in \prod_{i \in I} X_i : \sum_{i \in I} ||x_i|| e_i \in Y \right\}$$

equipped with the norm $\|(x_i)_{i\in I}\| = \|\sum_{i\in I} \|x_i\| e_i\|$. Then, if $(Y, \|\cdot\|)$ has property (β) , $(Z, \|\cdot\|)$ has property (β) , too.

2. B-convexity and property (β)

We start with the following results.

THEOREM 2 [2]. If a Banach space X has property (β) , then both X and X^* have the Banach-Saks property.

THEOREM 3 [1]. If a Banach space X is reflexive and B-convex, then both X and X^* have the Banach-Saks property.

By Theorem 2 and Theorem 3, it is natural to consider the relationship between the property (β) in Banach spaces and B-convexity in reflexive Banach spaces. We have another results concerning the properties.

PROPOSITION 4. If a Banach space X is k-uniformly convex, there exists $\delta > 0$ such that X is (k, δ) -convex.

Proof. Suppose that X is k-uniformly convex. Then for $\epsilon = 1$, there exists $\delta(1) > 0$ such that if $||x_i - x_j|| \le 1$, $i \ne j$, $1 \le i, j \le k$ and $x_i \in B_X$, then

$$\left\| \frac{1}{k} \sum_{i=1}^{k} x_i \right\| \le 1 - \delta(1)$$

Let $\delta = \inf \left\{ \frac{1}{k}, \delta(1) \right\}$. It is suffices to show that for $x_i \in B_X$ and $i = 1, 2, \dots, k$,

$$\inf_{\epsilon_i = \pm 1} \left\| \sum_{i=1}^k \epsilon_i x_i \right\| \le k(1 - \delta).$$

Suppose that

$$\left\| \sum_{i=1}^{k} \epsilon_i x_i \right\| > k(1-\delta),$$

for all signs $\epsilon_i = \pm 1$.

For $1 \le i < j \le k$,

$$||x_i - x_j|| \ge ||x_1 + \dots + x_i + \dots + x_{j-1} - x_j + \dots + x_k|| - \sum_{l \ne i, j} ||x_l||$$

$$> k(1 - \delta) - (k - 2) = 2 - k\delta > 1$$

Then

$$\left\| \frac{1}{k} \sum_{i=1}^k x_i \right\| < 1 - \delta(1) \le 1 - \delta.$$

We get the contradiction.

PROPOSITION 5. If X is k-uniformly convex then it has property (β) .

Proof. Suppose that X is k-uniformly convex. Let $\epsilon > 0$. Then there exists $\delta\left(\frac{\epsilon}{3(k-1)}\right) > 0$ such that if $z_i \in B_X$ and $||z_i - z_j|| \ge$ $\frac{\epsilon}{3(k-1)}$ $i \neq j$ and $1 \leq i, j \leq k$, then $\left\| \frac{1}{k} \sum_{i=1}^{k} z_i \right\| \leq 1 - \delta\left(\frac{\epsilon}{3(k-1)}\right)$. We show that there exists $\delta > 0$ such that for $x, x_n \in B_X$ with

 $\operatorname{sep}(x_n) \geq \epsilon$, there exists $m \in \mathbb{N}$ such that $\left\| \frac{x + x_m}{2} \right\| \leq 1 - \delta$.

Take $\delta = \delta\left(\frac{\epsilon}{3(k-1)}\right)$. Let $x \in B_X$ and $x_n \in B_X$ with $sep(x_n) \ge \epsilon$. Then there exists $m \in \mathbb{N}$ such that $||x - x_m|| \geq \frac{\epsilon}{3}$. (Indeed, if for all $n \in \mathbb{N} \|x - x_n\| < \frac{\epsilon}{3}$, then $\|x_i - x_j\| \le \|x_i - x\| + \|x_j - x\| < \frac{2\epsilon}{3}$. This contradicts that $sep(x_n) \ge \epsilon$.)

Consider $y_1 = x_m, y_2 = \frac{1}{k-1} \{x + (k-2)x_m\}, y_3 = \frac{1}{k-1} \{2x + (k-2)x_m\}, y_3 = \frac{1}{k-1} \{2x + (k-2)x_m\}, y_4 = \frac{1}{k-1} \{2x + (k-2)x_m\}, y_5 = \frac{1}{k-1} \{2x + (k-2)x_m\}, y_6 = \frac{1}{k-1} \{2x + (k-2)x_m\}, y_7 = \frac{1}{k-1} \{2x + (k-2)x_m\}, y_8 = \frac{1}{k$ $(k-3)x_m$, \dots , $y_{k-1} = \frac{1}{k-1}\{(k-2)x + x_m\}, y_k = x$. Since for $1 \le i < j \le k$

$$||y_i - y_j|| = \frac{1}{k-1} ||\{(i-1)x + (k-i)x_m\} - \{(j-1)x + (k-j)x_m\}||$$

$$= \frac{1}{k-1} ||(i-j)x + (j-i)x_m|| = \frac{(j-i)}{(k-1)} ||x_m - x||$$

$$\geq \frac{1}{k-1} ||x_m - x|| \geq \frac{\epsilon}{3(k-1)}$$

and

$$\sum_{i=1}^{k} y_i = \frac{1}{k-1} \sum_{i=1}^{k} \{ (i-1)x + (k-i)x_m \}$$

$$= \frac{1}{(k-1)} \left\{ x \frac{(k-1)k}{2} + x_m \left(k^2 - \frac{k(k+1)}{2} \right) \right\}$$

$$= \frac{k}{2} x + \frac{k}{2} x_m = \frac{k(x+x_m)}{2},$$

$$\left\| \frac{x + x_m}{2} \right\| = \left\| \frac{1}{k} \sum_{i=1}^k y_i \right\| \le 1 - \delta \left(\frac{\epsilon}{3(k-1)} \right) = 1 - \delta.$$

This completes our proof.

By Proposition 4 and 5, k-uniformly convexity implies property (β) and B-convexity.

We can get a simple example which is B-convex and does not have property (β) , by renorming $(l_2, \|\cdot\|_2)$.

EXAMPLE 6. Define a norm $\|\cdot\|$ in l_2 by

$$\left\| \sum_{n=1}^{\infty} a_n e_n \right\| = \max \left\{ |a_1|, \left\| \sum_{n=2}^{\infty} a_n e_n \right\|_2 \right\},$$

where (e_n) is a usual unit vector basis of l_2 . Then $(l_2, \|\cdot\|)$ and $(l_2, \|\cdot\|_2)$ are isomorphic, since $\|\sum_{n=1}^{\infty} a_n e_n\| \leq \|\sum_{n=1}^{\infty} a_n e_n\|_2 \leq 2\|\sum_{n=1}^{\infty} a_n e_n\|$. Since $(l_2, \|\cdot\|_2)$ is uniformly convex, $(l_2, \|\cdot\|)$ is superreflexive. Since superreflexivity implies B-convexity and reflexivity, $(l_2, \|\cdot\|)$ is reflexive and B-convex.

We show that $(l_2, \|\cdot\|)$ has no property (β) . It suffices to show that X is not (KK), since (UC) \Rightarrow property $(\beta) \Rightarrow$ (NUC) \Rightarrow (UKK) \Rightarrow (KK).

Consider $x_n = e_1 + e_{n+1}$. Then $x_n \to e_1$ weakly (Indeed, for $x^* = \sum_{n=1}^{\infty} \alpha_n e_n \in (l_2, ||\cdot||)^* = (l_2, ||\cdot||), \ x^*(x_n) = a_1 + a_{n+1} \to x^*(e_1) = a_1$) but $x_n \to e_1$ in norm, since $||x_n - e_1|| = ||e_{n+1}|| = 1$. This implies that $(l_2, ||\cdot||)$ is not (KK).

It is well known fact that B-convexity is isomorphic invariant. We can see that property (β) is not isomorphic invariant by Example 6. Thus it is reasonable to consider the following definition.

DEFINITION 7. A Banach space $(X, \| \cdot \|)$ is called a (β) -space if there is a norm $\| \cdot \|_1$ equivalent to $\| \cdot \|$ such that $(X, \| \cdot \|_1)$ satisfies property (β) .

Every superreflexive space is a (β) -space [8] but the converse implication does not hold [6]. It is well known fact that superreflexive space is B-convex and reflexive. Since (β) -space is reflexive, it is an apparent question whether (β) -space is B-convex.

THEOREM 8. There exists a (β) -space which cannot be equivalently renormed to be B-convex.

Proof. Since B-convexity is norm isomorphic invariant, it is enough to find non-B-convex space which satisfies (β) -property. Let

$$Z = \left\{ (x_i) \in \prod_{i=1}^{\infty} \mathbb{R}^i : \sum_{i=1}^{\infty} ||x_i||_{\infty} e_i \in l_2, \ x_i \in \mathbb{R}^i \right\}$$

equipped with the norm $\|(x_i)\| = \|\sum_{i=1}^{\infty} \|x_i\|_{\infty} e_i\|_2$ where (e_n) is usual unit vector basis of l_2 . Then Z has property (β) by Lemma 1. We prove that Z is not B-convex. It suffices to show that for all $n \in \mathbb{N}$ there exist $x^{(1)}, x^{(2)}, \dots, x^{(n)} \in Z$ such that $\|x^{(k)}\| = 1, k = 1, 2, \dots, n$ and $\|\sum_{k=1}^{n} \epsilon_k x^{(k)}\| = n$, for all $\epsilon_k = \pm 1$.

Define
$$x^{(k)} = (x_i^{(k)}) \in Z$$
 with

$$x_i^{(k)} = \begin{cases} \sum_{j=1}^{2^{n-1}} \frac{1}{\sqrt{n}} \epsilon_j^{(k)} e_j^{(i)}, & 2^{n-1} \le i \le 2^{n-1} + n - 1 \\ 0 \in \mathbb{R}^i, & \text{elsewhere,} \end{cases}$$

if
$$\epsilon_i^{(1)} = 1, 1 \le j \le 2^{n-1}$$
, for $k \ge 2$

$$\epsilon_j^{(k)} = \begin{cases} 1, & (2l-2)2^{n-k} < j \le (2l-1)2^{n-k} \\ -1, & (2l-1)2^{n-k} < j \le 2l \cdot 2^{n-k}, \ 1 \le l \le 2^{k-2} \end{cases}$$

and $(e_j^{(i)})_{j=1}^{j=i}$ is usual unit vector basis of \mathbb{R}^i .

Then for $k = 1, 2, \dots, n$,

$$||x^{(k)}|| = ||(x_i^{(k)})|| = \left(\sum_{i=1}^{\infty} ||x_i^{(k)}||_{\infty}^2\right)^{\frac{1}{2}} = \left(\sum_{i=2^{n-1}}^{2^{n-1}+n-1} \left(\frac{1}{\sqrt{n}}\right)^2\right)^{\frac{1}{2}} = 1$$

and for $\epsilon_k = \pm 1, \ k = 1, 2, \cdots, n$,

$$\|\epsilon_{1}x^{(1)} + \dots + \epsilon_{n}x^{(n)}\| = \left\| \sum_{i=1}^{\infty} \|\epsilon_{1}x_{i}^{(1)} + \dots + \epsilon_{n}x_{i}^{(n)}\|_{\infty} e_{i} \right\|_{2}$$

$$= \left\| \sum_{i=2^{n-1}+n-1}^{2^{n-1}+n-1} \|\epsilon_{1}x_{i}^{(1)} + \dots + \epsilon_{n}x_{i}^{(n)}\|_{\infty} e_{i} \right\|_{2}$$

$$= \left\| \sum_{i=2^{n-1}}^{2^{n-1}+n-1} \frac{n}{\sqrt{n}} e_{i} \right\|_{2} = n.$$

This implies that Z is not (n, δ) -convex for all $n \in \mathbb{N}, \ \delta > 0$. This completes our proof.

References

- [1] K.G. Cho and C.S. Lee, Alternate signs averaging properties in Banach spaces, J. Appl. Math. & Computing 16 (2004), 497–507.
- [2] Y. Cui, H.Hudzik and R. Płuciennik, Banach-Saks property in some Banach sequence spaces, Annales Polonici Mathematici 65 (1997), 193–202.
- [3] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Mathematics 10 (1980), 743–749.
- [4] S. Kakutani, Weak convergence in uniformly convex spaces, Tôhoku Math. J. 45 (1938), 188–193.
- [5] D.N. Kutzarowa, An isomorphic characterization of property (β) of Rolewicz, Note Mat. 10 (1990), 347–354.
- [6] V. Montesinos and J.R. Torregrosa, A uniform geometric property of Banach spaces, Rocky Mountain J. Mathematics 22 (1992), 683–690.
- [7] T. Nishiura and D. Waterman, *Reflexivity and summability*, Studia Math. **23** (1963), 53–57.
- [8] S. Rolewicz, On Δ -uniform convexity and drop property, Studia Math. 87 (1987), 181–191.

Kyugeun Cho Bankmok College of Basic Studies Myong Ji University Yongin 449–728, Korea E-mail: kgjo@mju.ac.kr

Chongsung Lee
Department of Mathematics education
Inha University
Inchon 402–751, Korea
E-mail: cslee@inha.ac.kr