• Title/Summary/Keyword: Ballistic

Search Result 444, Processing Time 0.024 seconds

High-Altitude Terminal Guidance and Control Loop Design Using Thrust Vector Control (추력벡터제어를 이용한 고고도 종말 유도조종 루프 설계)

  • Jeon, Ha-Min;Park, Jongho;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.393-400
    • /
    • 2022
  • The Divert and Attitude Control System(DACS) used in high-altitude engagements is expensive and complex. In this paper, we design a high-altitude terminal guidance and control loop of guided-missile equipped with a Thrust Vector Control(TVC) that is less expensive and simpler than DACS. The proposed system utilizes a quaternion feedback control technique to track the thrust attitude command converted from the acceleration command of true proportional navigation guidance. The performance analysis of the proposed terminal guidance and control loop is conducted through engagement simulations against ballistic targets at a high altitude.

Simulation, design optimization, and experimental validation of a silver SPND for neutron flux mapping in the Tehran MTR

  • Saghafi, Mahdi;Ayyoubzadeh, Seyed Mohsen;Terman, Mohammad Sadegh
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2852-2859
    • /
    • 2020
  • This paper deals with the simulation-based design optimization and experimental validation of the characteristics of an in-core silver Self-Powered Neutron Detector (SPND). Optimized dimensions of the SPND are determined by combining Monte Carlo simulations and analytical methods. As a first step, the Monte Carlo transport code MCNPX is used to follow the trajectory and fate of the neutrons emitted from an external source. This simulation is able to seamlessly integrate various phenomena, including neutron slowing-down and shielding effects. Then, the expected number of beta particles and their energy spectrum following a neutron capture reaction in the silver emitter are fetched from the TENDEL database using the JANIS software interface and integrated with the data from the first step to yield the origin and spectrum of the source electrons. Eventually, the MCNPX transport code is used for the Monte Carlo calculation of the ballistic current of beta particles in the various regions of the SPND. Then, the output current and the maximum insulator thickness to avoid breakdown are determined. The optimum design of the SPND is then manufactured and experimental tests are conducted. The calculated design parameters of this detector have been found in good agreement with the obtained experimental results.

Characteristic Property of Combustion and Internal Ballistics of Triple-Based Propellant including RDX (RDX를 적용한 다기추진제의 연소 및 강내탄도 특성)

  • Son, Soojung;Lee, Wonmin;Lee, Woojin;Kwon, Soonkil;Jung, Jinyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.321-328
    • /
    • 2022
  • The current development tend of the gun propellants that they should have low sensitivity and high energy. We studied a nitrocellulose based propellant composition that replaced sensitive NG with RDX and DEGDN which high energy and low sensitivity. The important factors in the design of the gun propellant were impetus and flame temperature. NC-based propellant containing RDX showed similar impetus but low flame temperature compared to KM30A1, a triple-based propellant. The developed propellant composition didn't show any abnormal combustion reaction and the characteristics of ballistic resistance were also confirmed.

SI-BASED MAGNETIC TUNNELING TRANSISTOR WITH HIGH TRANSFER RATIO

  • S. H. Jang;Lee, J. H.;T. Kang;Kim, K. Y.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.24-24
    • /
    • 2003
  • Metallic magnetoelectronic devices have studied intensively and extensively for last decade because of the scientific interest as well as great technological importance. Recently, the scientific activity in spintronics field is extending to the hybrid devices using ferromagnetic/semiconductor heterostructures and to new ferromagnetic semiconductor materials for future devices. In case of the hybrid device, conductivity mismatch problem for metal/semiconductor interface will be able to circumvent when the device operates in ballistic regime. In this respect, spin-valve transistor, first reported by Monsma, is based on spin dependent transport of hot electrons rather than electron near the Fermi energy. Although the spin-valve transistor showed large magnetocurrent ratio more than 300%, but low transfer ratio of the order of 10$\^$-5/ prevents the potential applications. In order to enhance the collector current, we have prepared magnetic tunneling transistor (MTT) with single ferromagnetic base on Si(100) collector by magnetron sputtering process. We have changed the resistance of tunneling emitter and the thickness of baser layer in the MTT structure to increase collector current. The high transfer ratio of 10$\^$-4/ range at bias voltage of more than 1.8 V, collector current of near l ${\mu}$A, and magnetocurrent ratio or 55% in Si-based MTT are obtained at 77K. These results suggest a promising candidate for future spintronic applications.

  • PDF

Paraffin-based ramjet missile preliminary design

  • Rogerio L.V. Cruz;Carlos A.G. Veras;Olexiy Shynkarenko
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.317-334
    • /
    • 2023
  • This paper presents a basic methodology and a set of numerical tools for the preliminary design of solid-fueled ramjet missiles. An elementary code determines the baseline system configuration comprised of warhead, guidance-control, and propulsion masses and geometries from specific correlations found in the literature. Then, the system is refined with the help of external and internal ballistics codes. Equations of motion are solved for the flight's ascending, cruising, and descending stages and the internal ballistic set of equations designs the ramjet engine based on liquefying fuels. The combined tools sized the booster and the ramjet sustainer engines for a long-range missile, intended to transport 200 kg of payload for more than 300 km range flying near 14,000 m altitude at Mach 3.0. The refined system configuration had 600 mm in diameter and 8,500 mm in length with overall mass of 2,128 kg and 890 kg/m3 density. Ramjet engine propellant mass fraction was estimated as 74%. Increased missile range can be attained with paraffin-polyethylene blend burning at near constant regression rate through primary air mass flow rate control and lateral 2-D air intakes.

Quantum Transport Simulations of CNTFETs: Performance Assessment and Comparison Study with GNRFETs

  • Wang, Wei;Wang, Huan;Wang, Xueying;Li, Na;Zhu, Changru;Xiao, Guangran;Yang, Xiao;Zhang, Lu;Zhang, Ting
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.615-624
    • /
    • 2014
  • In this paper, we explore the electrical properties and high-frequency performance of carbon nanotube field-effect transistors (CNTFETs), based on the non-equilibrium Green's functions (NEGF) solved self - consistently with Poisson's equations. The calculated results show that CNTFETs exhibit superior performance compared with graphene nanoribbon field-effect transistors (GNRFETs), such as better control ability of the gate on the channel, higher drive current with lower subthreshold leakage current, and lower subthreshold-swing (SS). Due to larger band-structure-limited velocity in CNTFETs, ballistic CNTFETs present better high-frequency performance limit than that of Si MOSFETs. The parameter effects of CNTFETs are also investigated. In addition, to enhance the immunity against short - channel effects (SCE), hetero - material - gate CNTFETs (HMG-CNTFETs) have been proposed, and we present a detailed numerical simulation to analyze the performances of scaling down, and conclude that HMG-CNTFETs can meet the ITRS'10 requirements better than CNTs.

Tracking Performance Enhancement of Space Launch Vehicle Based on Adaptive Kalman Filter (적응 칼만필터에 기반한 우주발사체 추적 성능 개선)

  • Han, Yoo Soo;Song, Ha Ryong;Lee, In Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.39-49
    • /
    • 2017
  • A Space Launch Vehicle (SLV) for Launching Satellites Consists of Multi-stage Rockets for the Purpose of Efficient Flight and Accomplishes the Launch Mission through Flight Events such as Stage Separation, Engine Start and Stop. In this Process, the SLV is Supposed to Undergo the Processes of the Powered Flight Section in which the Engine Generates Thrust and the Ballistic Flight Section in which there is no Thrust Repeatedly. Because it is Difficult to Express these Flight Characteristics of the SLV as a Single Dynamics Model, much Research on Tracking Algorithms using Multiple Models has been Undertaken. In case of using the Multiple Model Tracking Algorithm, it is Expected to Improve the Tracking Performance of the SLV. However, it is Difficult to Select Proper Dynamics Models to be used and the Calculation Amount Increases due to the use of Multiple Models. In this Paper, we Propose a Method to Track the SLV with Diverse Flight Characteristics Efficiently by only Two Kalman Filters using Constant Acceleration Model and Adaptive Singer Model.

China's Satellite Research and Development to Collect Electronic Signals for Marine Reconnaissance to Surrounding Nations (중국의 주변국 해양감시를 위한 전자신호 수집위성 연구개발)

  • Lee, Yongsik;Aom, Sangho;Lim, Jaesung
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.54-62
    • /
    • 2017
  • China has invested for military satellite technology development to construct the space-based surveillance system from existing land-based and aerostat surveillance system since 1960s to react rapidly for deployment of marine force of United States and surrounding nations in west Pacific, south China sea and Indian ocean. China has also launched about 40 the Yaogan military intelligence satellites series for EO, SAR and ELINT fields since 2006 after the required technique with several technical experiment satellites launch and operational test. ELINT satellites transmit data from satellite to earth station in real time with construction space-based network around it. Those data are simultaneously delivered to Anti-Ship Ballistic Missile(ASBM) connected land-based C4ISR network for marine target attack. Therefore China has enhanced surveillance and attack capability to the surrounding marine nations with space-based network around it. In the future, It is considered that China will increase accurate location search, signal processing and analysis ability through a further study on its technology.

Extraction of Effective Carrier Velocity and Observation of Velocity Overshoot in Sub-40 nm MOSFETs

  • Kim, Jun-Soo;Lee, Jae-Hong;Yun, Yeo-Nam;Park, Byung-Gook;Lee, Jong-Duk;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Carrier velocity in the MOSFET channel is the main driving force for improved transistor performance with scaling. We report measurements of the drift velocity of electrons and holes in silicon inversion layers. A technique for extracting effective carrier velocity which is a more accurate extraction method based on the actual inversion charge measurement is used. This method gives more accurate result over the whole range of $V_{ds}$, because it does not assume a linear approximation to obtain the inversion charge and it does not limit the range of applicable $V_{ds}$. For a very short channel length device, the electron velocity overshoot is observed at room temperature in 37 nm MOSFETs while no hole velocity overshoot is observed down to 36 nm. The electron velocity of short channel device was found to be strongly dependent on the longitudinal field.

Take-Over Time Determination for High-Velocity Targets in a Multiple Radar System (다중 레이다 시스템의 고속표적 인계 시점 결정기법 연구)

  • Park, Soon-Seo;Jang, Dae-Sung;Choi, Han-Lim;Kim, Eun-Hee;Sun, Woong;Lee, Jong-Hyun;Yoo, Dong-Gil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.307-316
    • /
    • 2016
  • A multiple radar system is comprised of early warning radar for fast detection of a target and air defense radar for precision intercept. For this reason, target take-over process is required between the two radars. The target take-over should be performed at an appropriate time by consideration of stable tracking and effective fire control. In this paper, operation characteristics of multiple radar system are analyzed and target take-over time determination method using estimation of target tracking performance is proposed for high-velocity targets. The proposed method is validated with ballistic target defense scenarios in the developed integrated simulator.