DOI QR코드

DOI QR Code

Tracking Performance Enhancement of Space Launch Vehicle Based on Adaptive Kalman Filter

적응 칼만필터에 기반한 우주발사체 추적 성능 개선

  • 한유수 (한국항공우주연구원 나로우주센터) ;
  • 송하룡 (한국항공우주연구원 나로우주센터) ;
  • 이인수 (경북대학교 IT대학 전자공학부)
  • Received : 2017.08.16
  • Accepted : 2017.09.27
  • Published : 2017.10.31

Abstract

A Space Launch Vehicle (SLV) for Launching Satellites Consists of Multi-stage Rockets for the Purpose of Efficient Flight and Accomplishes the Launch Mission through Flight Events such as Stage Separation, Engine Start and Stop. In this Process, the SLV is Supposed to Undergo the Processes of the Powered Flight Section in which the Engine Generates Thrust and the Ballistic Flight Section in which there is no Thrust Repeatedly. Because it is Difficult to Express these Flight Characteristics of the SLV as a Single Dynamics Model, much Research on Tracking Algorithms using Multiple Models has been Undertaken. In case of using the Multiple Model Tracking Algorithm, it is Expected to Improve the Tracking Performance of the SLV. However, it is Difficult to Select Proper Dynamics Models to be used and the Calculation Amount Increases due to the use of Multiple Models. In this Paper, we Propose a Method to Track the SLV with Diverse Flight Characteristics Efficiently by only Two Kalman Filters using Constant Acceleration Model and Adaptive Singer Model.

인공위성 발사를 위한 우주발사체는 효율적인 비행을 위하여 다단으로 구성이 되며 단분리, 연료점화 및 연소종료 등의 비행이벤트를 거쳐서 임무를 완수하게 된다. 이 과정에서 발사체는 추력이 발생하는 동력비행구간과 추력이 없는 탄도비행구간의 과정을 반복하여 겪게 된다. 이러한 우주 발사체의 비행특성을 하나의 동력학 모델로 표현하기는 어렵기 때문에 다중모델을 사용하는 추적 알고리즘에 대한 연구가 많이 진행되어 왔다. 다중모델 추적 알고리즘을 사용하는 경우에는 추적 성능의 개선을 기대할 수 있지만, 사용할 각 동력학 모델들을 적절히 선정해야 하는 어려움이 있으며 또한 다중모델 사용으로 인해 계산양이 증가하는 단점이 있다. 본 논문에서는 등가속도 모델과 적응형 Singer 모델을 사용하는 두 개의 칼만필터만으로 다양한 비행특성을 가지는 우주발사체를 효과적으로 추적하는 방법을 제안한다.

Keywords

References

  1. Song, H. R. and Han, Y. S., "Comparison of Space Launch Vehicle Tracking Using Different Types of Multiple Models," International Conference on Information Fusion, pp. 1-8, 2016.
  2. Mazor, E., Averbuch, A., Bar-shalom, Y. and Dayan, J., "Interacting Multiple Model Methods in Target Tracking: a Survey," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 1, pp. 103-123, 1998. https://doi.org/10.1109/7.640267
  3. Farrell, W., "Interacting Multiple Model Filter for Tactical Ballistic Missile Tracking," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 2, pp. 418-426, 2008. https://doi.org/10.1109/TAES.2008.4560196
  4. Singer, R., "Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-6, No. 4, pp. 473-483, 1970. https://doi.org/10.1109/TAES.1970.310128
  5. Zhang, H., Chang, Y., Liu, D. and Ma, K., "An Improved Target Tracking Singer Filter Algorithm," International Conference on Computer Science and Network Technology, pp. 1070-1073, 2013.
  6. Song, H. R., "Performance Enhancement of Launch Vehicle Using GPS-Based Multiple Radar Bias Estimation and Sensor Fusion," Journal of the Korea Industrial Systems Research, Vol. 20, No. 6, pp. 47-56, 2015.
  7. Mo, L., Song, X., Zhou, Y., Sun, Z. K. and Bar-Shalom, Y., "Unbiased Converted Measurement for Tracking," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 3, pp.1023-1027, 1998. https://doi.org/10.1109/7.705921
  8. Bar-Shalom, Y. and Birmiwal, K., "Variable Dimension Filter for Maneuvering Target Tracking," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-18, No. 5, pp. 621-629, 1982. https://doi.org/10.1109/TAES.1982.309274